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CHAPTER I ~ INTRODUCTION

1., The Fileld of Endeavor

The field commonly called Artificial Intelligence may, perhaps,
ba dascribed as "The totality of «ticwpis Lo make and understand machines
that perform tasks which till recently only human beings ~~14 perform and
perform them with ¢ificiency and effectfveness comparable to a human.”
There has been « large amount of concroversy on the aptncss of the pame
"ArELEicial Intollipeacc” for the field, Thore 1s probablv some utility
to this kind of discussion in view of the general fmpression the name
makes on the mind of the lay public. However, for the purposes of techni-
cal discussion one may declde not to attach any significance to the name
apart from what is implied by the definition. This kind of special tech-
nical use of well-known words is not without precedence, One may recall
the word "Energy” as used in Physics or "Group" as used in Modern Algebra,

The definition of the field given above 1is certainly not very
precise, It has always been extremely difficult to define areas of tech-
nical endeavors with precision, However, it may bhe worthwhile to try and
make some clarifying remarks which seem called for,

In the definition, when one refers to an activity performed by
a human being, it is not clear as to what aspects of the activity are con-
sidered important, If a machine 1s designed to play checkurs, for instance,
one can demand that:

1)} it wins often agalnst homan players,

11) 1t produces electroencephalograms similar to humans engaged
in playing checkers,

1il) it holds and moves pleces on a cherkerboard with the same
grace as some human beings do,

iv) it makes a move is less than ten minutes,

b i it 0 tn
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It seems to have boen the consausus of the practitioners in the fleld

that the firat and fourth demand above should be made while the second and
third demand should not be made, There 13 indeed souw ratlonale for such

a consensug. Howaver, the discussion of tha

e

ationale will carry this book
far frow its purpose ag stated in the preface, For the purposges of this
book any task under discusgion will be conaidered to be as described by the
contengun, No effort will be wmade to justizy thie consensus,

To avoid a certain unfortunate implication of the definition
another aspect of the definition will also bear clarification: the inter-
pretation of the phrase "till recently'". If the phrase is interpreted to
refer tn the recant past at any future time of discussion(within the
period of relevance of the book), then the fleld of Artificial Intelligence
takes on an aspect of ephemerality and becomes a clearing house for {11-
understood techniques, Thig is not Iintended and the phrase "till rccently"
should be interpreted to reter, within the period of relevance of this book,
to the time of wyxiting of the book, Hence when a machine 18 made to perfomm
a humar activity for the first time, the definition should not be taken to
asgsert that later attempts to make better versions of the machine should be
considered as outgide the field of Avtificial Intelligence, Even after a
wachine 1s constructed which meets the aspecification of the definition, any
attempts to make machines which perform the same task by a different aethod
would still be in the field. 5o would be thuoretical attempts to shed light
on the performance of such machines, since this might facilitate the con-
struction of machines which perform other similar tasks,

However once the method of construction of machines for the

performance of a certain class of human tasks is well understood, the
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constructfon of such tachines would also be considered ar an activity in
some other field depending on the nalure of the machine as well as the
purpnas af budlding 14

The last point needs discussion, A rather curmory glance
through the activities in the field of artiticial intelligence will reveal
& nrusber of different techulques and purposes,

There have been some attempts made at using digital computer
programe for finding satisfactory solutions of industrisl or engineering
dewigu peel?-—- - optimal solubicn was either Lard te define or too
time consuming to obtain, If techniques for writing such programs for
specific purposes become well-understood and perfected, these activities
would probably be conridered as parts of the appropriate branches of
management or englneering - or disappear altogether, being replaced by nub-
routine libraries,

There have béen many digital computer progroms designed [ 1)
to gimulate certain activities of the humun mind, There have been simu.
latione of groups of humans, as in Sociological phenomena (including economic
phenomena) . There have also been simulations of individual humans finding
solutions of complex combinational problems, making deductions from a
corpus of given facts or recalling facts by assoclation, Once the method
of destign of such programs and their uwe for Psychological or Sociologiral
investigation {s well undecstood, it may again be reasonable to classify such
activities Iin Pusychology or Soclology. As before, Economics has been
lneluded in Sociology for the purposes of this discussion.

The state of formalization of the field, however, is such that
it is difficult to say with respect to a specific attempt, as to whether {(t

is an effort to simulate human processes or an effort to solve a certain

]
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problem, 1f the problem is one whose golution {s of {muediate applica-
bility in technology mwanagement or, one can even L{gnore any purposes the
attempt serves for the Peychologist or Sociologist and classify the attempt
#s potentially belonging to technology or management. 1, however, the
problem {n of no fmmediate applicability, 1t would be unfair to clasnify
the attempt as belonging to Psychology cr Sociology unless the motivation
for writing the program arcse from a psycholugical or Soclological
interest, Often such programs are claimed to have been designed to simulate
the way the pv~grammer believes he would atrempt to solve the problem
himself; however, the motivation in these cases may come rrom a desire to
solve the problem rather than to understand hiuman phenomena.

There has been considerable discussion as to whether such
attempts need be classified as activities in a recognized ficld of Science,
Many feel that it may be easier to classify them as recreational activities
of some clever computer programmers, However, there have been wany
occasions in the history of Science where the recreational activitieg of
some people have led to ingights that have enriched Science or even techa
nology or busincas: rthese computer activities may well lead to such an
enrichment, Study of the literature in the field indicates that the various
attempte mide at writing efficlent programs for finding solutions of large
combinational problems show some busic communality of approach and technique,
Sem{-formal attempts have also been made to codify these similarities into
a theory, Such study of empirical attempts and results, together with
attempts to unify them is becoming an ilmportant branch of Artificial
Intelligence. One may call this branch, "Theory of Problem Solving",

It appears that the time ‘s not too far distant when this kind of activity -

a study of problems and their solutions independent of any paychological

Tt

L.
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connotations - will denote & well defined area oi endeavor., Apart from
the appropriateness of this field as an {mportant subfield of artificial
intelligence, it wmay also be conaidered as 2 branch of Computer Sclence
E or perhaps mathematics, In & less formal way, this activity has followed
hy students of Metundology in Philosophy,

By ite very nature, theory of Yroblem Solving {8 an applications-
orignted discipline. Even at thig early astage ot its deveclopment, tech-
nique and ideas originated Iin the field of Artiffcial Intelligence has

found and promiges to find fruiltful applications in Science and Technology

| f2].
"Pattern Recognition" is often cons’dered as a separate branch

of Artificial Intelligence, although there has Leen a growing vrecognition

over the yearas of the close relationship between this field and what has

been delincated above as "Theory of Problem Solving", However, this relation.
ship 418 very ill.understood, One of the recasons for this i{s the lack of a
clear aset of definitions of rterms uged 1~ the fiecld of "Pattern Recognition",
There has been enough activity in the field toindicate that the busic idea
deals with the recognition of a given object as belonglng to a given set

of objects. This recognition is only possible vhen there is a statement (in
some language) which i# true for all objects in the given set and is

false for all objects not in the given set , For reasons associated with
the hiscory of the work at Cace, the set of objects will be called the
patterdor 'concept., This Ls at slight variance with the intuitive use of

the term'battern)’ One often uges the term to denote the description of the

set or those statements about the recognizable object which implies the
description, For the purposes of the book, the words ‘pattern”and" concept"

will stand for the set of objects,

b - . . et e
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A perusal of the usages in the fleld indicates that a
"pattern recognizer" is 8 machine which can form the description of a
pattern whan prusented with 4 swmall number of objects in the pattern,

Tha term "pattern ledrning” will be used in this book for the activity,
regserving "recognition” for the much simpler activity uf recognizing whether
aa object belongs to a pattern with a given description,

While vost activities in the other fields of Artificial
Intelligence have been carrieu out with the aid of digital computers, a
considerable am unt of the work in Pattern Recognition has used the aid
of other devices., The u:2 of adaptive threshold logic elements was one of
the first steps taken in this fileld of endeavor. By now the original
uproar regarding the neuro-physiological significance of such devices has
subgided, However, threshold logic (adaptive or otherwise) remains an
interesting area of study in the field of switching theory, It is possible
that a theory of "neural networks" based on such devices will have a strong
influernice on the theory of p-ttern recognition; however, such a possibility
seems rewmote 4t prasent,

in what has gone above we have made an attempt to subdivide
the field of Artificial Intelligence., Almost the entire content of this
book deals with the area desienated as "Theory of Problem Solving'". Since
Pattern Recognlition (studied as a computer algoriihm) 1is very closely
7alated to this area, pattern recognition will also be discussed at length,

The approach that will be used may be described as Systems
Theoretlic., A model for problem situations will be set up using certain
abstract and quite elementary set theoretic concepts, In its abstract
form, such a model can be looked upon as a# generalized definitiona only;

the model does not appear to contain indications of what might be considerad
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to be mcthods of solving the problem., To obtain such indications, certain
further structures would have to be assumed, Stating the matter another
way, one may say that the minimal structure needed for defining a problem is not
sufficient to define methods of sclutien, Various forms of extra struc-
tures can be introduced as tools for the discussion of methods of sclution.
In this book only one such gtructure has been chosen. The reason for this
choice is historical - in that this was the first atructure that occured
to the school of investigators whose work is presented here,

The resulting model, embodying the model of problems with
certain extra structures, is almost identical with the model of problems
envigaged in the General Problem Solver developed by Newell, Simon and
Shaw, However although tlie model as it stands is sufficient for the begin-
nings of a discussion of solution metiiods, this advantage was not used by
the originators of the General Problem Solver., Instead, a specific method
of solution was developed and studied, but never deseribed with adequate
precision,

It has been argued hat the were existence of <n abstract
model for gsolution methods is of no value. What is crucial is an adequate
description of the problem which makes it amenable to the solution method.
The argumen*t is perfectly valid in so far as it says that abstract sets
do not have sufficient structures for the study of any specific eolution
method, However, the argument does not imply (as it is often made to
lmply) that one therefore should not use a precise theoretical approach to
describe solution methods, This false implication has led to the use of
intuitive and imprecise descriptions of solution methods, It is hard to
make any judgement as to whether this has been of advantage or of disadvan-

tage to the field, However at the present state of the art an effort at
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making one's discussions precise and mathematically correct promises
immediate returns; in case of communication and documentation of ideas
and results, in quick evaluation of basically errvoneous ideas - and perhaps
alsc in aiding lmnovations by interaction with related fleids,

If one considers the major part of the argument against
precise models of solution methods, one La forced to agree that a problem
forumlation to be meaningful must have with it an adequate representation
of the problem in some language, Thia is in no way at variance with the
basic tenets of systems theory. It is clear that no specific problem can
be formulated unless the sets associated with the problem aruv adequately
degscribed in some language, Indeed, the effectiveness of this language of
description turns out to be easy to discuss in terms of its efficiency in
describing the sets associated with the solution methods. But this rieeds
precigse definitions of the associated sets,

The above discussion indicates another important belief on
which this book is baged. A weaningful theory of problems and their solu-
tion ahould include or have close relationships with a theory of descrip-
tions and description languages. Such a theory will be discussed in this
book, together with a model for problems and some models for problem solu-
tion,

It is not claimed here that efther the models of problems and
solutions or the theory of descriptions as they stand at pregent are
adequate for the purposes of Artificial Intel.igence. However, a belief

is inherent that any meaningful theory ¢ problem solving must include such

orecise models and theories.
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2. Outline of the Basic Models

The present book will deal with models of problems and two-
perstn gawes, Bouih of these will be specialization of a general model dis- .
cussed by Marino [ 3], This model can be looked upon as a general model of
control systems in addition to that of problems and games,

Basically, one is given a set of objects which are called
"states" in control theory and may be called "situations" in the theory
of problems and gawmes, In addition, there are two other sets, whose
elements will be called "controls" and'disturbaences", (iven a control
paired with a disturbance, certain situations are changed to other situa-
tions, Thez modes of such changes are pre-specified, A certain set of
situations have their elements labelled as desirable or "winning situations",
Given a situation, the control problem is generally stated as the problem of
finding a control such that no matter what disturbance it is paired with,
the resulting situation is a desirable one,

When a real control problem is posed in asuch abstract terms one
often finds that the set of controls and the set of disturbances are so
intractable that an appropriate control is practically impossible to cpoose
among the host of possibilities, Fortunately, most real prcblems impose
certain extra properties on the situations, controls and disturbances.

Many have the property that the control and the disturbance sets are
"generated" by a more tracgable set of elements, This will be made precise
later, For the present purpose one may say roughly that each control is a
sequence of "elementary" controls and each disturbance 1s a sequence of
"elementary" disturbances. The problem then reduces to that of finding

a sequence of elementary controls such that no matter what elementary dis-

turbance is paired with each elementary control, the final result of the
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sequence of pairs is a winning situation, This problem may be called the
prablem of finding an "open loop controller".

One difficulty often arises with such a specification of the
problem - a difficulty which is often ignored in control problems but is
of supreme importance in games, The difffculty arises because all eclemen-
tary controls may not be applicable to all situations. As a result, a
sequence of elementary controls cannot be chosen which will be appiicable
irrespective of what elementary disturbance they got palred with.

One can get around this difficulty by asking, not for a control
sequence, but for a "control strategy". A strategy is an initiasl decision
on the control to be uged at each situation, any time the gituation arises,
Given a certain situation, one decides on the control dictated for the situa-
tion by the strategy. Depending on the disturbance that is paired with
this control, a new situation arises. A new control is then dictated for
the new situation by the strategy and the process is repeated. If such a
sequence ultimately results in a winning situat{on irrespective of the
disturbance, the strategy is called a "winning estrategy”, The finding of a
"winning etrategy" is analogous to finding a "closed lonp controller”,

The idea of a strategy essentially envisages a Bellman~type
embedding of a problem in a larger problem [4 ], It is of advantage even
in cases where {t is inessential - that is, when the applicability of con-
trols are independent of the situation, Moreover, it is well-known that
in some control problems one cannot build an open loop controller while a
cloged loop controller can be bullt,

The general model of centrol situations can be speclalized to

yield some special classes of the so-called problem.situations. Mesarovic [5 )
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has classified problems into various types one of which is as follows:

"Given a set S, subsets T and H of S and a set of functions ¥ such that
F maps 5 Lintu 8, te find & wmember of ¥ which maps each

element of H into some element of T",

When one defines a real problem in this framework, one faces
the yawwe kind of difficulty as in the case of the control problems,
Mesarovic had pointed ocut in his paper that the set F, to be tractable,
should be "constructively defined", Windeknecht [ ¢ ) assumed a specific
constructive structure of F by assuming that elements are obtained by
composing functions from a finite get Fo of functions. He also stipuleted
that the elements of Fo were partially defined over S, so that the compo-
sition operator defined a partial semigroup rather than a semigroup., H was
considered as a unit set, This model will be followed in this book except
that for the purposes of this book it will not be assumed that Fo is a
finite set,

If a problem is defined in the manner given in the above para-
graph, one seea a clear relationghip between this model of a problem with
the model formulated by Marino. If in the model of Marino the get of
elementary disturbances be a unit set (whose element may be called
"inaction") then each elementary control defines a map from eéituations
to situations and can be taken to be members of Fo. This analogy will be
pursued rigorously in the next chapter,

The wodel of problems discussed here is also very closely
related to the model used in the General Problem Solver, In this latter
model one is given a set of situations and a set of transformations each
of which changes some aituations to some other situations, One is supposed

to change a given situation into another given situation (the "goal") by
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applying a sequence of transformations, The polnt at which the wodel of
the general problem solver differs from the model envisaged in this book
lies in the introduction of a set of goals (winning situations) inetead

of 5 single one, Thnis difference is not mergly a matter of generalization,
It will be shown in the next chapter that ip scome of the specific cazeas
handled by the ganersl problem solver, one is actually interested it a set
of goilw ruther than a single goal, This has become evident especially in
view of some recent extensions [ 7 ] of the original GPS,

At this point no attempt will be made to discuss the major part
of the General Iroblem Solver which deals with methods for finding solutions
to problems, This will be done latez., For the purpose of the present
section, it would be more {important to point out how the model proposed by
Marino can be reduced to the model of a two-person game,

I1f the extended form of a fero-sum two person game of the
von Neuman Morgenstern type [ 8] be restricted to have pay-off functione
whose values are only 1, =1, then such games can readily bes shown to be
repregsentable by a special class of Marino-type models. In thesge, one
fixes a specific elementary coutrol and a specific disturbance, each called
"inaction", It may then be specified that in each situation either the
control inaction or the digturbance inaction is applicable, but not both,
This introduces the concept of the player's move and the opponent's move,
Also a further axiom can be introduced if necessary forcing the player and
the opponent to move alternately,

The above model can be made i:0 represent an N-person game in
that the disturbances may be considered to be the result of the joint action
of n-1 players, However, since such an assertion sheds no light on the
behaviors of the separate n-l players (with respect to coalitions and related

phenomena), this assertion will not be made seriously here,
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However, the model here is not so specific as not to include
games with Lncomplete information. One need not conmtrue the elements of
S as embodying the entire information regarding the pagt of the game, Ar
a matter of fact it will be noticed that in che present model the entire
past (& not embodied in a zitustion, Unlike in von«Neumsn's modal of sitended
gameg, the present model is not a tree, but an automaton {or a labelled
directed graph). One can carry this process a step further and consider ¢
sltuation as the "gtate of information" of a player, i,e, a subaget cf the
set of “actual situations", It would not be too difficult to show how
4 game with incomplete information can be converted into a "larger" gamc
(with a larger number of situautions) with complete information - in a way
analogous to converting & nun-deterministic automaton to a deterministic
automaton., However, this generalization does not shed any further light
on the wethcds of solution in the absgtract, and will not be pursued further

in this book,

h
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3. A Set-~Theoretic View of Pattevn Rucognitiun

The main purposs of this book will ba to consider certain

wethods for finding sviutions to problems and gawaes and thair ralationship

—

to peiiern recognition, This relationanip can be discussed in & clear

i

mannar if both the activities (rroblem-solving and pattern recognition)
can be discussed within the pame mathematical framework., As has been said
before, the framework of elementary set theory will be used in thie book.

In their essance, the methcds of problem eolving will be taken
to stem from the existencs of certain basic subsets of S &esociated with a
problem or game., Sowe such sets (like the winning eituations, or the domain
of applicability of diftereni controls, etc,) are provided by the rules of
the game itgelf, Certain others are suggested by the idea of u solutiom.
To see this roughly (detalled discussions will appear later) one can imagine
that one person who knows the solution of the problem for every initial
situation intends to tranafer to someons else his knowledge. For every
specific control he will have to define the set of situations in which
that control is to be used. These are one class of sets assoclated with
the idea of solution, Other sets associated with the idea of solutions
will be considered in the next chapter, Meanwhile, it is crucial to make
the point that in all cases of interest the set § of situations is extremely
large, Hence these sets cannot be exhibited by
any practicable enumeration technique. It is this difficulecy which holds
up efforts at problem solving,

However, the difficulty may not be unsurmountable., It may
be recalled that although the set of aftuations fa large, no difficulty

arises about its enumeration, Any chess player can recognize a chess
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position ap 2 chess pogition, $Similarly, the ser of all
mates never have to be enumerated either - a mate Lls easily recognizable

when {t occurs, The rules of the game glve us the controls, disturbances

]

nd winning situaticn, ust as cwmeirations but as "descripbions™ -
methods by which members of these sets can be recognized when they arise.
Similarly any sclution method, to be practicable, must be expressed in
terms of the descriptious of (he sets assoclated with the solution merhods.,

The difficulty lies with the word "practicable", The prac-
ticability of a gtrategy is atrongly dependent on the language one uses for
the description of the sets associated with the solution methods, One can
change the language of description te change the practicability of various
solution methods,

or problem

The difficulty of finding a solution of a game/lies in the fact
that the language which i{s needed for practicable descriptions of the sets
asgoclated with tne solution method is seldom identical to the one used in
describing its rules, {,e, the conbrols and the winning, losiag
and draw situations, Ideas regarding description languages L8 crucial here -
as they are in any adequate theory of pattern recognition, In what follows,
an approach to the formal definition of such terms as "description”,
"description language', "pattern", etc, will be given,

As stated previously in Scction 1, a pattern may be defined
as a set of objects, One can consider the pattern of all the letters "A"
projected on an array of photo-cells, cthe pattern of all checker positions
showing satisfactory center control [ 9], the pattern of all sets of
theorems from which a desired theorem can be obtained by Modus Ponens [10].
It will be worthwhile to realize at the outset that when one

tries to develop a language for describing a class of patterns, one cannot
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seriously mean to be able to describe the class of all patterns (if one
trics, onc faces immediate dilemmas like, "Do the ser of all paterns which
are uot elements of thewselves form a pattern?”). The clans of patterns
has to be restricted, The initial restriction that will be made here will
be to a claws of subsets of a glven aet, which we shall call the Universe
of diacourse or aimply the Universe, By definition, any object will be
taken to belong to the Universe.

If the univerase is finite, one can consider any subset of it
to be described by a liat of {ts elements; but if the subset (or pattern)
is large, one caunot call such a description practicable, One has, at this
point, to make some further restrictions - to assume some further structure
for the univaerase,

Without too much loss of realism, one can wake the assuuption
that there are certain general statements one can make about elements of
the universe whose truth can be tested easily for any specific element of
the universe, Such statements will be called "Predicates" in keeping with
literature {n Symbolic Logic {16). The assumption will be that in addition
to the universe, one is slsoc glven a set of predicates,

It has alresdy been indicated that the description of a pattern
yields a procedure which has the following property; given an element of the
universe, the application of the procedure determines whether the element
belongs to the pattern or not, Clearly any pattern, each of whose elements
satisfy a given predicate (which, in turn, i{s satisfied only by the elements
of the pattern) is describable by that predicate, One can say, therefore,
that our assumption has led us to & clase of patterns which are'easily des-

cribable" in the sense that their descriptions are embodied by single pre-

dicates whose truths are easily tested for,
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We can take the eagily describable class of patterns ase
forming the generators of a Boolean Algebra, The class of describable
patterns may be restricted to the elements of this Boolean Algebra, If
one does this, one may make the rather trivial statement that a descripe
tion language which incorporates the initlal predicates and uses the logical
comectives of "or", "and", "wvot", "implics", etc, will be able to describe
any element of the class of patterns under consideration,

The major problem, however, is not so much of the possibility
of description, but of the efficiency of description., One needs descrip-
tiong where the elementary predicates are combined {n such a way that the
resulting statements are not inordinately long., Also, one needs the state-
ments to be such that their truth and falsity can be tested for without an
inordinate amount of processing, This once more restricts the class of
easily describable patterns,

Logical connectives are not the only means by which the
initial predicates can be combined, A large amount of work has gone into
combining predicates by threshold gates [17], for iastance. The patterns
which yield short descriptions through single applications of threshold
logic form a sub-class of the class of all describable patterns. All des-
cribable patterns can be described by more than one application of thres-
hold logic,

One can in an £nformal way define a description language to
conaist of a set of initial predicates and a set of connectives or modes of
combination which can be used to combine the initial predicates to yield
degeriptions of describable patterns, The class of patterns easily des-
cribable by a given description language depends on the description lan-

guage,
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Tha ¢lass of patterns whose elements are to be described is
deterrined by the problem which necessitates the recognition of elements of
the patterns iun the clasgs. +The basic probiem then reducea to the €ollowing,
"Gilven a cl'ass of patterns, to develop a description language which yields
short and easily processable descriptions for all patterns in the class,”

At the present time no practicable wethod for the salution of
such a problem has beun developed (as a matter of fact solution methods
for very few problems have been developed), However, a study of the prob-
lem in its formal espect indicates the need for a2 uniform wodel of descrip-
tion languages in which different description languages can be embedded.
This enables changing one language to another - a definite necessity for
the specification of the pasic problc. itself, 1In what follows some of the
bagic building blocks for a generalized description language of this kind
will be rpecified,

Initially, some structure will pe assumed for the predicates
of the languoge. It will be assumed that each specifies the result of =
test performed on an element of the universe. In effect, the test is a
mapping from the universe to the get of resuits, The kernel of cthis map
(an equivalence relacicn) induces a partition on the universe. The elewments
of this -partition are mapped one-to-one onto the set of results, The image
of each element of the partition under chis map will be called the "name"
of tne element,

One can thus make two equivalent statementy about an element
u of the universe: (1) "The result of performing tast P oun u is pi" or
(2) "u belongs to the element Py of the paviitiosn P", For historical

reasons the sccond form of the statementc will be aduiered to,

o —— e e e
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With the bagly made above one can define a pattern as either an
element of a pavtition or obtained from othex patterns by set theoretic
operations. In what follows each partition will be called an input property
and the elements of a property will be called its values,

Any get of palrwise disjoint patterns whose union covers the
universe will also be called a property. By definition, any input property
is a property, but not cornversely,

An object is a pattern which is either contained in or disjoint
from any value of any input property, It can be shown quite readily that
&n object is either contained in or disjoint from values of all properties,
It can further be seen that an object 1s an Intersection of a class of
values of input properties. They can, therefore be represented by a list
of pairs of names, each palr consisting of the name of a value and the
name of the property to which the value belongs. For example, a typical
oblect might be ”<P1’ Pya PZ’ Pyys P3; 933)"-

Any pattern can be described by a Boolean expression involving
valves or a statement involving predicates of the form P(u) = p where P is
an input property, The problew of firding the simplest expression des-
¢ribing a pattern is a rroblem closely analogous to finding the simplest
expression for a switciiing function (as can be sezen, switching functions
are speclal cases - each input property has two values). The solution
depends basically on what one means by "simple' and, as in the case of
switching function, the sclution can be found only for some restricted
defiaitions of simplicity,

Very uften, after the simplest de cription is found for a pattern,
thie "simplest description 1s still so complex as to be unusable., At this
point one can hope to find simpler descriptions if ones uses preperties

ather than 1w;ur propertlies in the description., To do this, one needs to
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aliow predicates oi the form u ¢ K where K is the value of some property
other than an input property. Of course, to use such a description one
needs to invoke the description of K as a pattern, One thus obtains the
analog of the Ashenhurst dacomposition [18] of & Booleanw funciiom, 1In &
later chapter some of the techniques and terminologles associated with
these problems will be discussed,

The literature in the field of pattern recognition indicates
that the only kind of switching functions that have found use in the field
are those expressible as conjunctions and as threshold expressions. The
largest effort in the field ie spent on finding the "useful"” propertics that
render the pattern expressible in one of these simple forms, Unfortunately,
there 18 no uniform method for expressing the processes that yields vilues
of thege ugeful properties., If one comsiders the problem with the set-
theoretical blas inherent in this book, a rather interescing uniformity
emerges., One often finds that these processes yielding the values of the
useful properties really process the names rather than the denotations of the
input properties and their values,

There will be later occasions to discuss this kind of process-
ing for some seemingly realistic situations. For the present one can con-
sider the following rather artificial example, which 18 based on a rather
well-known example used by Bruner [19],

Let the universe congist of the 9 configurations shown in
Figure 1,1, We shall call the atomic objects of this universe 1,2,,,.9
for convenience, as shown in the figure, Formally, the universe will have
two input properties, whose names will be "crngses" and "borders", (One
could denote these properties by P1 and P2 in keeping with the definitions.

However, since the future discussions will be heavily dependent on the names,
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X X X X X X

(1) (2) (3

(4) (5) (6)

(7 (8) (9)

Fig. 1.1

A simple universe iilustrating the use of non-input properties

and the usefulness of processing names rather than denotations of values,
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this may bc as good a place as any to introduce names which have greater struc-

ture than abstract eymbols, Each of the properties have three values which
shall have "one", "two" znd "three" as namws.

To give {nrultive meaning to ihese properties and values,
let the get (1,4,7) be the value "one", of the property "crosses", Simiiarly
let (4,4,6) be the value "two" of the property '"borders".

This universe has the convenient property that every distinct
atomic object i{s the member of a distinct and unique object. As a result,
every subset of the universe is a pattern. For the purposes of the present
discussion, the pattern (4,7,8} = A (say) may be considered, This set will
be described in three different ways: one using only input properties, one
by using properties other than input properties, one by using relationships
between names of the values of properties. This will be done to illustrate
the three methods, rather than to exhibit the difference in their efficlency
as degeription methods, Such difference can be exhibited conclusively
only for larger universes; examples will be given later when the description
language i8 introduced formally.

Ona could describe the pattern A formallv by the statement:

xe A & (crosses(x) = one)A ((borders(x) = two) |/ (horders(x) = three))

v (( crosses(x) = two)/\(bOtders(x) = three }}

involving only predicates of the type P(u) = p.

The pattern A could also be described with gtatements of the

type ue¢ K as follows

xe A = (xe BYA (x¢ C)
xe B = (crosgses(x) = one)\/ (crogses(x) = two)
xe C = (figures(x) = one)y (borders(x) = three)

= e, e P A ol e
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'F . This form of description is of advantage only if the patterns B and C can
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be involved in the description of many patterns other than A,

in many existing pattern recognition schemes, the switching f !
function for a paettern is restricted to have some specific form, For J

instdnce It mry be restricted to have a form realizable by a single thres-

hold gate. 1If, for example, one makes the restriction that A be deacribed

by a minterm expression, the second description above would be according to

such a restriction, The pa'terns B and C would be "usmeful" features for

describing A. 1In most cases such features are obtained by processing the

names of the values of the input properties and not in the form of a

Boolean Expression as done here, 1t is desirable for the sake of

uniformity and flexibility of the description language, however, to express 1
[
such preprocessing of names in the same format as other descriptions, ]

To illustrate such a format a third alternative description for

the pattern A above will be exemplified. This example will take advantage

of the fact that the names of the values of the two properties, "crosses"
and "borders", come trom the set of numerals and the concept A can be des-

|
scribed in English by saying "In any element of A, the number of crosses 1is {

less than the number of borderg", The description language will need some

method for expressing the relation, "less than". It will be shown later

how a relation can be expreesed as a pattern in the universe of ordered

n-tuples, This involves the introduction of several new universes. For

the present purpose, only one new universe needs be evoked, This will be

evoked to enable the expression of the symbols "one", "two" and "three"
(the names of the values of the properties crosses and borders) as their
binary counterparts, Each numeral will have two properties, "head" and

"tail", standing for the twos place and the ones place of their binary
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expansion, The values of both these propertfes will be called F and T,
The numeral "two" for example will take the form (head, T; tatil, F},.
With this new uulverse in mind one can dewciibe the pattern
A a5 follows
xe¢ A 5 (head(border(x)) = 1)A((head(crosses(x)) = 0

vV ((tail(bordera(x)) = I)A(tai.l(crosaes(x)) = 0)))

As before, the advantage of such a description becowes clear only in those
cases where the universes involved are much larger, There will be later
occasion to discuss this. It may, however, be pointed out at this point

that even where such an advantage is obtainable, it is obtained at the
expenge of making the objects of the universe more complicated (imbuing

the universe with greater structure). For example, as long as we used the
symbols "one'", "two" and "three" as values of crosses and borders, a

typical abject (6,say) of the universe would be (crosses, two; borders,
three), When the values themselves are construed to come from the structured
universe of binary numerals, the same object becomes (figures, (head,T;tail,F);
borders, (head,T;tail,T)).

The relationship between the richness of the deascription lan-
guage and the facility of problem solving will be discusged through some
examples in later chapters, The present section can be brought to a close
with the following remarks,

So far discusslions have been limited to descriptions of patterns,

Given a description language one wants to construct a processor which can

operate on objects to determine whether they are contained in any given pattern.

This presupposes certain restrictions on the language., For instance {f the
language is strong enough to describe recursively enumerable sets of objects,

no procesgor of assured ability can be built,
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Even assuming that one hag & )Janguage which enables the cone
structlon of the corresponding processor, this would not solve the problem

of "patlecn vecognition”,

l
it appears from the literature that pattsrm rccoguition cone ' _
sists of forwing rather than processing a description. What ls generally
envisaged as pattern recognition is the following phenomenon, A processor
is pregented with a set of objects, each of which 1s tagged to indicute
whether or not is 18 contained in a given pattern, Jrom this data, the
processor ie supposed to form a description (in some larguage) o€ a paktern
which contains all the objzcts tagged as being contained in the glven pattern
—

and does not contain any object which {8 tagped as not Lelng contained in
the given pattern.

It {8 not overly difficult to build such a processor, The
difficulty so far lies only the slwplicity of the gencrated description.
This has been discussed before, Hovwever, another demand is often wmade on
the description generusting procegsor, Ir Ls expected that the description
congtyucted by it will be such that when an untagged new object is prersented
to the processor, it willi fit the description if and only if it belongs to
the given pattern., This 1s clearly an impossible tagk in general - the
only evidence presented to the procesgor about the pattern having been the
tagged objects, As long as the tagged objects do not exhaust all objects
in the universe of discourse, one can always have a number of distinct
patterns satisfying the tagging of the elements, The processor builds the
degcription of only one of these patterns - it would be self-defeating to
form all the descriptions, and even that would not help in the recognition

of later untagged elements,
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The phenomenon uvé “"generalization" has recelved some attention
trom statiscicians [20]. Thelr studies seem to indicalte that the number
of tagged objects neaded for aptablishing a degree of confidence in a des-
cription ias arrongly dependent on the usefulncas of the fecaturcs used and
the regulting rimplicity of description. There will be later occasion to

comment on this mattzy i{n detatl,
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4, The Arrangement of the Book

In the next chapter (Chapter T1) Mar{no's model will be intro-
duced formally and some of Lte important properties discussed., It will then
b shown how some of the important concepts assoclated with the Marino model
can be speclalized to the Windeknecht model, Some important classes of aets
apsociated with solution methods will be {sclated and dizcuseed, 1t will
be polnied out how some of these classes have already been used in eome
case studies reported in literature,

In Chapter III the Marino model will be specialized to the case
of two-person games and a discussion similav to that in Chapter I1 will be
ingtituted,

As a prelude to Chapter V on Pattern Recognition, Chapter IV
will introduce in a precise and detailed manner the description language
introduced in Sec. 3 above, Thias will cenable the discussion of similarities
and differences between various pattern recognitionschemes,

In all thege Chapters certain atatements made in this present
Chapter will be established precisely,

In Chapter VI the role of pattern recognition in problem and
game polving will be discussed, The importance of the appropriateness
of the description language will be brought out in view of the crucial role
it plays in learning sclutieon metheds., Some examples will be given, These
will be simple, merely because very few difficult examples have bezen worked
out,

In Chapter VII short descriptions will be given of certain
regearch activities at the Case Institute of Techrology where computer
programs have been implemented for certain problem solving tasks., The

success and failure will be discussed in view of the theories discussed pre-

viously,

. . . i
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CHAPTER II - FROBLEMS AND SOLUTION METHODS

1. Introduction

The main purpose of this chapter is to dimcuss problems a=s
modelled by Windeknecht (these will be called Waproblems in the future).
However, since many ideas raelevant to Marino's model is relevant to this
48 well as to the next Chapter, the next two sections of the present Chapter
will be devoted to Marino's model (herefnafter called M-mituations), to
eome of its properties and to its relationship with Weproblems, An impor-
tant theorem vegarding M-situations (Theorem 2,1 below) deals with the
existence of winning strategles in M-situations. Similar theorems will be
shown to exist for W-problems and Game-Situatione (discussed in Chapter IIT).
These will be established by establighing W-problems and Game-Situations as
special cases of M-situations, To enable one to do this it is necessary
to 1) set down the basic structure of M-situations, 1i) to
put down the basic structure of W-problems and indicate their isomorphism
with a4 speclal class of M-situations and 1i1) to set down the basic struc-
ture of Game-Situations and indicate their isomorphiem with another
special class of M-situations, Sec, 2 will forwalize the structure of
M-gitudtions. Section 3 will elaborate the discussions
envisaged in (1i) above, The discussion of relationsghips between M-
situations and Game Situations will be relegated to Chapter III,

In Sections 4 and 5 some well known problems and puzzles will
be described as W-problems, In later sections, some methods for finding
solutions to problems will be discussed., It will be shown to what extent
these methods have been approximated by some solution wmethods used in

literature,

WL




e U P T T

« 29 &

2, Some Properties of M-Situations

In Chapter I, the basic ideas underlying M-situations have been
elarified, In what follows some of these ideas will he made more precise,
As said before, this formalism is essentially these of Marino, although 4
few minor changes have been made to bring them in line with the purposes
of this book,

An M-gltuation ia given by a 7-tuple < §5,C,D,M,5 > where

WSy
S, C and D are abgtract sets and Sw and SL are disjoint gubsets of S. M
i a subgset of SxCxDxS with the following propertics.

32; (Bl,cl,dl,sz)e M and (al’cl’dl’BB)e M implies 8, = 8,.

This merely says that M is a function mapping a subset of
SxCxD into 5. The reason it is not defined initially as a function is
beceuse M i3 not defined for the entire set SxCxD.

Before the next properties of the relation M are introduced
another definition will be needed, Given an M-situation and an element

ce C one defines the set

s, = {s|@d)(As') ((8,c,d,8")e M)) .
Similarly, for each member de¢ D one can define
S4 = (8](@c) (Te)((s,c,d,8")c M) .
It follows from the definition that if (s,d,c,s8')¢ M, then
B¢ SCfTSd. However, {n all M-situations it will further be assumed that
M2, If se Scnsd ther (3s')((s,c,d,s')c M)
For convenlence as well as for motivation, members of § will

be called situationa; members of Sw and ‘L will be called winning situations
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and loslag sltuations respeciively; members, of ¢ will be calied controis

and members of D will be called disturban-» . (8 c,d,s')c M will cften be
| exprensned by saying "s' is the result o” ly g ¢ and d to 8" or by
(c,d)(a) = &', Members of Sc will he cal. ' «ituaticeng to which ¢ g :

;
§ applicable", Simlilarly with 54- Situations . . which no controls are

applicable, Lf not winning or losing situations, will be called duaw

situations and denoted by SD'
A function
P:5-(5,Us U Sp— €

will be called a control strategy if

P(9)= c implies se § .

A disturbance strategy i1s defined similarly

A winning strategy is one such that, no matter what strategy is
chosen by the disturbing influence, any sequence of applications of controls

and disturbances applied according to the strategies results in a winning

situation, One can express this formal.v as follows,
Given an element%#sul)sLU Sp » a control strategy P, is

called a vinning strategy for 8, if for every disturbance strategy PD

there exists a sequence (cl, 1) (CZ’ 2) (c3, 3),...(c d ) such that

¢, = PC(BO), d1 = PD(so); ,

1

and for each i (1 < i<n):

[

i

1—1'-1 PC((ci’di)((ci-ldi-l)(' . '(cl’dl)(so) .o ')a

di+1 PD\\ 1’ i)((ci 1! 1 )( ll 1)(S ) ")‘ . i

and

(e 4 3 (e 144 DCua(eg,d)(a)n)e S,

B T L
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A control strategy P

c is called a nou-losing strategy for 8,
1f it f{¢ efther a winning strategy or for no disturbance strategy PD is
it the case that there exists a sequence {(ci,di)} (1 <1 < n as before)
such that

¢ = Pc(so), dl a PD(GO);

and for each i (1 <1 < n)

L}

C1+1 PC((ci'di)((ci-l’di-l)( . '(cltdl)(ao)' o)y

dis1 = Bplledd ey 0dy )G onleg,d))(8). 005

and
(epd) (g2 D(enc(eyd)(8) ) e s, .

A gituation for which a winning strategy exists is called

a forcing situation. The set of all forcing situations is denoted by §

P
A situation for which a non-losing strategy exists but no winning strategy

exists is called a neutral situation,

The following theorem is of great interest, We sghall state
it here without proof (a2 proof can be found in Marinofs thesis).

Theorem 2,1, Given an M-situation, there exists a strategy
which 18 a winning strategy for every forcing situation and a non-losing
strategy for every neutral situation,

In the next section the definition of W-problems will be intro-
duced and related to that of M-situations, It may be worthwhile to men-
tion at this point, however, that the word "strategy" here has been used in
a gomewhat specialized sense, Unlike its traditional usage in the field,

a strategy is not a method for searching for the solution, In a later
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term is used here, L{n the embodimen> of the conastruction of a solution -
correctly or otherwise, A winning atrategy 1¢ & wethod for ewbodyiug the
construction of & "correct" soluticn, A search is really a method for

changing strategles as defined here.




3., W-Problems and M-Situations

A W-problem is given by a triple <S,FDT> where § is an abstract

T & paubget ¢f S and T a2 set of funmctions from subscts of § inte §
¢ o

f ¢ Fy implies f:Sf ~ 5 and qug s,

Given a W~problem and 8,€ S, a winning solution for 5, is a

sequence of functions fl'fZ”"fn such that fie Fo for each { and such that

fn(fn_l(...fl(so)...)e T .
A function

Q: flEJFo S¢ - T =F,

is called 8 W-strategy if and only if

Q(s) = f implies s¢ Sf .

A W-strategy {s winning for 8,€ S if there exists a winning solution fl’fZ'
f“ such that

£, =Q(s))
and for each i (1 <1 <n)

£ = QUELCE, ( (B (8,)000).

To indicate the relationship between W-problems and M~situations
one needs a special class of M-situations which will be defined next,

An M-situation is called problem-like Lf and only if

D = (df} , a unit set,

s8¢ Sc for some ¢ ilmplies 4SL.

SD = @ the empty set,

‘ml-ﬁrv
At R

Given a problem-like M-gituation,
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R = 5,0, (d'),4,5,,5,>

one can define a triplet

P\R) = S |F0.T >
vhere T = Sw and Fo is & But of relations defined as follows:

fe F if and only if there exists a c¢ C such that for all s, 8'c §

(8,8'Ye £ LIf and only if (s,c,d',8')e M.

It is not hard to see that P(R) is a W-problem, S is an abstract
set, end T 1ie a subset of S, Each element f¢ Fo is a function since
(8,8')e £ and (8,8'')c £ implies (8,c,d',8')c M and (8,c,d?,s'?')ec M
for some unique c whence by Ml, s' = 8'!, For ecach ce¢ C there is a function
Ece F, and these are the only members of Fo. Also Sf = Sc' This can be
seen by noting that s¢ Sc implies (due to the uniquen:sa of d') s¢ Scf\sd,
whence by definition there exists s' such that (8,c,d?,s')c M whence fc is
defined for a; proving ch;s

Similarly, 1if 8¢ S then there i3 an s!

f ’
c

such that (s,c,d',s')¢ M whence s¢ Se-

f ]
c
Given a We-problewm

P =<S,F°,T >

one cen define & 7-tuple

R(P) =<S,C, (d'}, Myswst>
where

and ¢ and M is composed as follows:
For each element of f¢ Fo there isan element c.e C and these

are the only elemente of C. Also

v

PO S

et mememed

b — ———
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(s,cf,d'.s')e M if and only {f £(8) = af,

R(P) is a problem-like M-gituation since S and C can be

taken to be abstract sets, D = (d') satisfying Pl, s, and §, are dis-
Joint subsets of § by definmition, Mi follows since f is 2 function for aach i

Cge M2 follows also since from the uniqueness of d', s¢ Sc implies and

£

(trivially) is iwmplied by s« SC[]S Since 1t can alac be saen gquite
f

dr’
easily that S. = S. s 8cS_ also implies the existence of s' such that

£ £
f(8) = s' leading to (8,c.,d",8') e M, P2 can be seen to be satisfied since
8¢ SL shows 8¢ § - c&?C Sc. i.e, 8¢ c%jc 8, proving the contrapositive of

P2, To prove P3 one notices that

SD =8 - LJ S - SL- Sw and SL & - LJ S - Sw.

ce C ¢ ceC ¢

In what has gone above, two mappings have been defined, one
from M-gsituations to W-problems and one from W-probleme to M-situations,
In what follows i- is shown that these mappings are one-one and inverses
of one another,

Theorem 2.2. For all Weproblems P and problem-like M-
situations R

P(R(P)) =P and R{(P(R)) =R,

Let P = < §,F_,T >

re) =< s,cffurs - Uos oo
and B(R(P)) = < S,F 1,T >

It is only required to show that FysF

Let f¢e Fo; then by definition of R(P), there exists a ce o]
such that SC = Sf and £(8) = ' if and only if (s, cf,d',s')c M. By

£
construction of Fé, there is an element f'¢ Fé such that Sf' = Sc and

£
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f'(a) = #' L{f and only if (n,cf, d', #')g M. Hence ' = f showing that
FOQ; Fé. The reverse inequality follows similarly proving that Fo - Fé.
Let now
R = 5,0, (4'},M,8,5 >
P(R) =< S’Fo'sg>

and R(P(R)) =<5,C',{d] ,M',5,,8'>

That C = C' and M = M' will follow from definition as in the
previcus case, To show that SL = Si, it is recalled that from P2 that
R SL impliea 8¢ CE?C Sc or Sng s - c!JC SC. However, since SL are Sw

sére disjoint,

Again, since by P3

one has

proving the reverse inequality.

The R and P functions demongtrate that problem-like M
sltuations and W-problems are identical structures. However, they do not
establish that the concept of a winning strategy as defined in the two
structures are identical concepts., To show this one introduces another

definition.

Given a W-probiem P and a W-strategy Q for P, one defines a

function R{Q) from a subset of S into C as follows
R(Q)(8) = Cg if and only if Q(s) = £,

It can be verified that R(Q) iz a control strategy for R(P).
R(Q)(8) = cg lwplies Q(8) = £f. Since Q is a W-strategy, this implies

8¢ Sf whence s8¢ Sc showing that R(Q) fulfilla one condition for being a
£

e e
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control strategy. To show that the domain of R(Q) is indeed S'SW'SL'SD’

one notices that the domain of Q s £e Fu Sf-su = CE?C sc'sw' Now

(3 |
::L = 8§ - C';'C SC-SH

whence

5-5 = U s Us,

ceC "¢
whénce

oo, w Yoo
Since SD = & the domain of R(Q), which cotncides with the domain of Q 1is
indeed S-Sw-SL-SD.

One can now state and prove the following theorem, which is an
important step towards the establighment of the analog of Theorem 2.1, in
the case of W-problems,

Theorem 2,3, Let Q be a W-strategy for the W-problem P, Let
R(Q) be the control strategy for R(P) as defined, ThenQ is a winning W~
strategy for 8, tf and only if R(Q) is a winning control strategy for 5,
in R(P).

One initially notices from the construction of M that s¢ Sé if
and only if 8¢ Sf for some f¢ Fo. Hence every disturbance strategy PD has
as its domain JE’FO Sf-Sw and PD(s) = d' for each 8 in this domain, This,
then, is the only possible disturbance strategy.

Let now R(Q) be a winning strategy for 8 in R(P). Then there

exists a sequence of controls G 98¢ 40.0C
1 E2 fn

such that

cflz R(Q)(ao)

and for each L < n

s rtore o i m——
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Cf - R(Q)((Cf

LAY (v (e 48" (8 0).00)
1 1-1 £ °

and

(o 1@0eg AN deg (D)2 8y

T~i

Thia indicates that

£n(fn-l(...£1(so)...)€ Sw

fl ot Q(!o)
and

ft = Q(fi_l(---fl(so)...) for each i < n,

Thus Q {s a winning W-strategy for ° in P. The proof that R(Q) is a
winning strategy for L in R(P) if Q is a winning W-strategy for 8, in

P follows in exactly the same way, It can also be shown that any strategy
in R(P) 18 R(Q) for some strategy Q in P.

One can state without proving that if there is & winning sclu-
tion for s, in P then there is a winning W-strategy for 5, in P, One merely
assoclates f1 with L fz with fl(so) and 8o on; the rest of the situations
have any value for the strategy.

Let T'g; S be the get of all situations in & W-problem such
that s¢ T' if and only if there is a winning solution for s, Hence there ia
a winning strategy for each element of T' in R(P)., Hence eiach element of
T' is a forcing state in R(P). Also, each forcing state in R(P) is « member
of T*,

The important thing to note heve is that by theorem 2.1 there
is a strategy R(Q) in R(P) which is a winning strategy for cach se¢1',

Hence there is a W-strategy which is winning for each element s¢ T', This

fact yields some solidity to a rather meaningful theorem that will be 1ndicated
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later, 1In the rest of this chapter some processes for finding winning
strategies will be dimcussad, To make this discussion meaningful, the ncxt
two awctions will introduce two problems that have been discussed in

iiterature and show that these can be formulized as W-problems.
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4, A Simple Example of a W-Problem: The Tower of Hanoi,

In the present section and the next, two problems will be
discussed as W-problems, In addition to motivating the uass of W-prablems,
thess would also serve in future sections to illustrate somo ldeas developed
in relation to solutfon methods, There will also be occasion to indicate
how aome of these ideas avé lnberent in methods described in Artificial
Intelligence literature,

This present section will be devoted to describing the cele-
brated puzzle called the tower of Hanoi (11 ,12]. The puzzle is generally
described as follows,

One is given a set of n disks (n may be any number: folklore
attaches the value 64 to n; we shall exemplify our problem with smaller
values), These are of unequal diameter, There are three long pins fixed
upright on a board, Each disc has a hole in the center large enough to
pass any pin through it but not large enough to pass any other disc through
ic,

Initially, all the discs are on one of the pinas, They are
arranged with the largest disc at the bottom and the smallest diec at the
top; each disc rests on a larger disc, It 18 required to transfer all the
discs to another pin by moving one disk at a time from one pin to another,
The constraint 1is to be observed at all times that no disc should ever
redt on any disc smaller than itself. Also only the discs at the top
position In any needle can be moved, The initial configuration is shown
in Figure 2,1, to clarify the description given. n has been taken to be
6 here, However, the value of n will not play any eseential role in the

formal representacion of the problem,
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The Tower of Hanoi

Figure 2.1.
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To represent the Tower of Hanoi problem as a W-problam one

way specify as follows,
Each element of § consists of a sequerce of three sequences
of integers

§cS =8 = <(x01'“02""“010)*(“11’x12'"'“111)'(“21’“22""“212)>

These thrce sequences have the following properties:

1 —
Hl, io Lo+ d n

(L.e,, there are a totality of n integers in the three sequences, each

integer standing for a disc).

H2. xij =X, only if 1 =8, J =t

(i.e., the integers appeaiing in the sequences are distinct)
H3, 1< T <n

H4, For each i, j > k implies xij > LI

(i.e., larger integers appear after smaller ones in each sequence:

smaller integers stand for larger discs)

The set Fy consists of 2n functioneg, to be denoted by the
generic name (k,m) where 1 <k < n and m = +1 or -1. The move (k,m)
is the formal analog of moving the kQE disc (in the order of size)
from the top of any pile (or pin) either to the pile to the left or

the one to the right depending on the sign of m, The domain S(k m) of
the function (k,m) 1is defined as follows:

H3. <(“01'“02""“010)'(x11’*12'"‘“111)'(x21’“22""x21 )>

2
is an element of S(k,m) if and only if either x010= k or x111= k or
x212= I and 1f xsis= k then k > xtit where t = 8 + m (mod 3), The values

of the functions ar~ given as follows.

W ¥ T
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HO. If 8 = <(x5),% "'"‘010)'("11"‘12'""‘111)'("21'“22"""212)

im in the domain of © 1) and k - ¥ (i =

'3

(k,m)(g) = <Uxgy ,2,.,.xdio),(xil,xiz,...xiil),(xél,xéz,...xé12)> |

whare

)

v

i

{

»
Bt e ki Rvial AAENS.

ie = ié-l if t = j; ié = it+ 1if ¢t = §J +m (mod 3); 1! = it otherwise,

1
t
Algo

X/, = X, except when t = j + m (mod 3) and L = i

'
ti t

X0 = k when t = j + m (mod 3),
t
H7. T 1is specified to be the unit set consisting of

<$.(1,2,...n),4>.

Interest will be centered on specifying a winning solution for
«(L.2,...m), 9, ¢,

As an example of a solution of the problem when n = 3, let us

consider the following sequence of moves, The smallest disc is moved to the f
right pin, the second largest disc is woved to the left pin; the smallest
| disc is then moved right (from the right to the left pin "around the circle")
; to the top of the second largest pin. Then the largest disc is moved to
| the (mow empty) right pin, the smallest disc moved right to the original
(now empty) pin, the second largest disc is moved left (around the circle)
to the top of the largest disc on the right pin and the smallest disc
moved right to the top of the pile,
The exhibition of this sequence of moves is formally equivalent

, to the statement that when n = 3

' (3l+1)l(2’-1)’(3)+1)$<1)+1) r(3:+1) 1(21'1) v(31+1)

is a solution, since I
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(3,413 ((2,-1)((3,+1)((1,+1) ((3,41) ((2,-1)(<(1,2,),(3), )
(3,913(2, =1} ((3,+1)((1,41) ((3,41)((1), (3), (2)>))))
(34100213 ((3,41)((1,+1) (<01}, 4, (2,321

(3,+1)(€2, 1((3,+1)(<, (1),(2,3)>)))
(3,+1)((2, -1} (<(3), (1), (2)>))

(3,+1)(<(3},(1,2),4>>}

<¢.1,2,,9>.

In a later section a winning strategy will be pointed out which
yields this winning solution. Meanwhile, the next section will formalize
the problem of finding proofs in Propositional Calculus, For this purpose
the Hussel-Whitehead version of the propositional calculus will be used,

following Simon, Newell and Shaw,

o T—— . L —— TG S—— T T ™ Ml T i A T
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3. The Logie Theorismt « Another rxampie L

As an introduction to formalizing the problem of finding proofs
in propositional calculus as a W-problem, the exact model used in the logic
theerist will be discussed here. This cxample will indigete the motivatien
for considering W-problems to have a possibly infinite Fo, as has been done
in this book,

As in the literatuve, the alphabet of the propositional calculus
will consist of the following:

1, An infinite set of propositlonal variables, whose members
will be denoted by lower case latin letters with integral subscripts if
necessary,

2. The symbols (, ),~, ¥ and o .

Well-formed formulae (wffs) are defined in the usual way as
follows:
a) Any propositional variable is a wff,

b) If A and B are wffs, thena~m A, (A Y B), (A - B) are wifs.

It is understood that A and B above are meta-linguistic variables
standing for wffs, Also, in keeping with literature, parentheses may be
dropped when exhibiting a wff, it being understood that the resulting
strings of characters are shorthands for wffs rather than wffs themselves,.

A subset of the set of wffs is defined as the set of theorems
as follows:

0, The following (called axioms) are theorems

(1) ((pV ?) =p)

(i1) (p > @@ V)

(i) ((pV q) - (qV¥ p))

(lv) ((p¥@Vr)) @V )
v) ((P-2q >((xVp) ~(ry q)))
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1. 1If A(p) is a theorem in which the apecific propositional
variable p occurs, and B is any wff, then A(B) is a theorem, where A(B) is
obtained from A(p) by replacing every occurence of p in A(p) by an
occurence of B, This is the usual substitution rule,

2a, If (wA ¥ B) occurs anywhere in a theorem C, then D,
obtained by replacing this occurence in C by (A —»B), is alec a theorem,

2b, If (A —B) occurs in any theorem ¢, then D, obtained by
replacing this occurence in C by (wAY B), is also a theorem, 2a and 2b
are applications of the definition of'implication" in terms of "not" and
Yor",

3. If (A »B) is a theorem and A is a theorem, then B is a
theorem, (The usual modus ponens,)

On the basis of these definitions, one can set up a W-problem
as follows to represent the problems of finding the proofs of theorems.

Each gituation s is a finite sequence of wffs (sl,sz,...sn).
These wffs stand for the set of theorems proved at a certain stage of the
proof procedure,

F° consists of four classes of functions, denoted by
(1) (1, A, B,l) where 1L 18 an integer, A Ls a propositional variable

and B is a wff, (41) (i,J,2a) where i and j are integers (iii) (i,j,2b)

where i and j again are integers and (iv) (i,),3) where i and j are integers,

These stand for substitution, tne'"forward" and "backward" application of
the definition of implication and modus ponens respectively, Formally,
these functions are defined as follows:

(i) (Substitution) s = (31,52,...sn) is a member of s(i,A,B,l)
if and only if 1 < n and the wff 8, contains the propositional variable A,

In this case
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(iiA’Bll)((sliazl"'an)> = (51u521°‘°5n75n+1)

where 84l is obtained from s, by replacing all occurences of A by B,

i
(ii) (pefinitican-Application) 5 = (sl,sz,...sn) is a member
of § 1f and only if L < n and there are at least j occurences of
(i,j,Za) -

wifs of the form (w AV &) in 8,. In this case

(1’3’23)((51,529-='5n) = (91132,"‘3n’3n+1)

where 8l is obtained by replacing the jth occurence of @wAVB) in N by
(A - B),

(111) (Definition-Application) s = (sl,sz,...sn) is a2 member
of S(i,j,Zb) if and only if 1 < n and there are at least § occurences of

wifs of the form (A —B) in s In this case

T
(i,j,Zb)((sl,ﬂz,---Bn) = (91:82"~-9n»sn+1)
where 5,41 is obtained by replacing the jth occurence of (A 5 B) in s by
~A V B),
(iv) (Modus Ponen) s = (51+8,,...8 ) is a member of 5

(1,3,3)

if and only if {i,} < n and for some wffs A and B, 8y is (A - B) and sj is

A, In this case
(1’1’3)((51p82,'018n) = (31,52,...8n,5n+1)

where s is B.

n+l

In (i1) and (iii) above the occurences of the sentence of the
form @A V B) and (A —B) are ordered by the occurences of the main connec-
tives of these sentences, reading from left to right., As an example, in the

wif

C=((wwvaV(a 5b))V(c » (@wd Ve))) o £)



- 48 -

the {ivet oucuvence of & Wil of ihe fovwm A ¥ B) is @wa ¥(a - b)); the
second occurence is (WWay(a - b))¥Y (c — (wd V e))); the third occurence
is awd ¥ ), Similarly the first occurence of a sentence of the form

(A =B) ig (a = b): the serond accurence iz (¢ — Wd ¥ a)); the third
occurence is C itself. Hence if the situation s consists of the single
element C, then

(1,2,22)(s) = (((oH(eR¥ (a - b)) ¥ (c - wdWVe))) - £),((maVY(a -b))
- (¢ - WdVe))) - f))

while

(1,3,2b)(s) =(((W@waV(a ~Db))yY (c > wd¥e))) »f), m@waV(a -b))

Vic » wdVe)))VE).

Finding a proof of B from the suppositions AI'AZ"”Ak (i.e.,
showing A1 ’AZ""Ak" B) would correspond to the following W-problem, 8, is

the sequence (AI,AZ, oo By X Xz. .. .XS) where xl ,)(2, .+.X¢ are the five axioms.

k1 5
T congists of the set of all sequences of wffs containing B. A winning solu-

tion would be a sequence f} ’f2""fn of functions such that the sequence

L (E e (A A e ALK K, X)) )e T

As an example, the winning solution of the W-problem corresponding to a
proof of ((p —wP) —ap) from the axioms ('»((p — & p) > &~ p)) would be the

sequence (1,pmp,1),(6,1,2a)

This can be seen as follows

(6,1,2a)((1,p,wp,1)((((PV P) =P),(P(aV P)), ((PVY q) - (q¥ P)),
((pY(@Q VTI)) > (@¥(pVr))),(p—=q 2 (r¥p) - (r V)N
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(6,1,28)((((p¥ p) =P),(p=»(ay P, ({(P VY —=(qvp)),(py(qgy 1)) -
(QY(PVI))),((pP-9) w((rv p) «r V q))),((~pVs p)wap)))

(e P) 2P, (p=2(avpP)),({PV q) - (qaV¥P)),((PV(aV¥I)) - (qupvr))), )
((p>g) »((r¥V P) =~ (r VD), (WwpYwp) -ap),((P —mp) ).

The last sequence contains the theorem to be proved ag its last element,
Two examples have been given, in this section and the previous
one, of the representation of two problems as W-problems, In the next few

sections various properties of winning strategies will be discussed,
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6. Strategles and thelr Description

It is clear from the diascuseion in Section 3 that the solution
for a W-problem can be found if a winning Westrategy is known. The idea of
a4 strategy has been irhurent in many works in Artiifcial Intelligence,
Howaver , the mere giving of a precise form to this idea dows not shed any
light on the basic question, "How is a winning strategy to be found?" In
later sections various devices will be suggested for the finding of strategies.
0f course, these devices in their turn will need the knowledge of other
functions or sets, These again, will have to.be "found" for any given
problem one i8 faced with, These are introduced in the hope that some of ;
these will provi: easier to deduce from the description of the problesm or
from "experience',

In this section attention will be glven to a different, no less

crucial problem, "Even when one knows a strategy, how can one make sure

that i¢ is easy to implement?" That is, in what form is a strategy to be
represented in memory? Evidently, the strategy cannot be stored as a huge

set of ordered pairs, It is essential that a small set of tests be specified

to the computer, The value of the strategy for a situation (the control
to be chosen) is determined on the bagis of these tests. As can be seen

from our discussion in Section 3 of Chapter I, this is essentially a prob-

t lem of description of sets, The details of this latter gubject can only be '
discussed in a later chapter. For the present it will be assumed only that
. some subsets of S are "easier" to describe than others, It will also be

k agssumed on the basis of the discussion in Chapter I that it is of use to be

able to find a common description for all situation 1in § which yields the i
same value of the strategy. \
Glven a strategy Q one can define the following relation E on

f‘c."FOSf— T
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(8y,8,)c E if and only if Q(s;) = Q(s,)

Clearly, this relation is an equivalence relation. This relation is pre-
cisely the relation Qc:Q'1 (the composition of Q with 1its inverse relation)
and hence w{ll be called the Kernel of the strategy Q, felloving algebraic
terminology {13].

The Kernel of a strategy partitions the set F%lsosf- T into
disjoint subsets called its equivalence classes, For a strategy to be
practicable, each subset {n this partition is to be easily describable,
For future purposes, the symbol Q'l(f) will be used to denote the set of

all points s such that Q(s) = f. This, again, is standard algebraic nota-

tion. It follows immediately from definitions that

£, # f2 implies Q'l(fl)(\ Q-l(fz) =y

and

U oty - VU 5.1

fEFO feFo £

A particularly easy description for these sets exist for the
Tower of Hanoi problem, This will now be set down in the way of an
example,

It will be recalled that in the Tower of Hanoi Problem of
Seccion 3, a situation consiste of a sequence <31,sz,s3> where each
8 (1 =1,2,3) is a sequence of integers with certain properties. It
will also be recalled that the controls are denoted by ordered pairs (k,2)

where K Ls an integer and £ = + 1. the domain of (k,4) have been

S (k,0)

previousiy defined, Also, it has been pointed out that there are n elements

in the union of 51,52,53, considered as sets, One now defines a strategy

as follows:
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k+1} if and oniy it

P(G) - (l'-'v('l}
1) =2 £<9,1,2,3,...n),8 > and

8 5 kel and
~ J(kl("l)A )

111) eé § “*1) for any 1 < k.

11)

(3,(-1)
Since in the case of the Tower of Hanoi EE}FSf = §, the domain
of P ought to be S»T which it is, by conditicn (i) above, Condition {il})
assumey us that the strategy always chooses au applicable move, That P is
indeed a winning strategy for s_ = <(1,2,3,...,,n),9,@ > can be verified

: in the case of n = 3, as follows:
P(<(11293)’¢'o >) = <3r+1)

and (3,+1)(<(1,2,3),0,0>)

P(<(1!2))(3))a>) = (21'1)

£(1,2),(3),0»

4

and (2,-1)(<(1,2),(3),8>) = <(1), (3), (2)>
P{<(1),(3),(2)>) = (3,+1)
and (3,+1)(<(1), (3), (2)>) = (1), @, (2,3)>
P((l), @, (2,3)3) = (1,+1)
and (1,+1)(<(1), 9, (2,3)>) = <@, (1), (2,3)>
pP(<d, (1), (2,3)>) = (3,+1)

and (3,+1)(W, (1), (2,3)>) = <(3), (1), (D>

P(<(3)a (l)r (2)>) (2!'1)

u

and (2,-1)(<(3), (1), (2)>
P(<(3), (1,2),8 >

<3, (1,2), 0>

{]

(3,+1)

I

and (3,+1)(<(3), (1,2), @ >) = <4,(1,2,3),08 >

The last situation 18 a winning situation, It will be noticed

that the strategy P has yielded the same solution as was exemplified in

Section 3.

e
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It can be shown by induction that P {8 indeed the winning
strategy for (<(1,2,...n), ®,8 > for all n, This will be indicated when
the concept of subgoals Ls discussed later., It way be pointed out that P
is the winning strategy for all states, However, for gome sltuations it
may not yleld the "shortest" solution in the sensa thdt tor these situations
one can find solutions as a shorter sequence of controls by violating the
strategy P, There are, agaln, other strategles for the Tower of Hanoi which
are winning strategles only for some situations. There are others which
yield the shortest solution for all situations. At present, ft (s not
proposed to discuss these various strategies, 1t is, however, worthwhile
pointing out at this point that the strategy P discussed here has been
defined mostly in terms of statements which are needed for describing the
problem itself. Only the concept of tsking the powers of -1 was not a part
of the concepts used in the description of the rules of the game, The
others - the descriptions of S(k,i) and the concept of one integer being
less than another - were inherent in the description of the problem, Free
use was also made of logical quantification in defining the strategy but
these were used also in the description of the pr.lem. The significance
of these facts will be discussed when the basis for description languages
and their use in problem solving has been made clearer,

The presen: section will be closed by pointing out an important
consideration regarding the search for a praccticable strategy. 1In many
real problems one needs winning sclutions, not for all possible situations,
but only for a few situations, By the Marino theorem and Theorem 2,3, there
1s a winning strategy for the set of all siltuations for which a winning
solution exists., However, it may be more advantageous to find a4 .ess

“"ambitious" strategy; one which is a winning strategy -- not for all possible

aasniey ssssaesa
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situations but only for those situations for which a aoluttion i nesded,
This will ve clarified tliough a theorem, To introduce the theorem one
needs the following definition.

Given any subset Slq; T‘ let:?xsl) denote the set of all
strategies which are winning strategies for every element of Sl' that is
Pe P(sx) if and only if for every s¢ 51' P 18 a winning strategy for s,

Theorem 2.4 1If slc_-:_ $,€ T then’ﬁsl) :3?52) 48

Proof:
Let P €1P(92)- Then P is a winning strategy for all elements
of SZ‘ Since each element of S, ie an element of S,, P {3 a winning

1 2
strategy for every element of §,. That is, Pelf%sl).

That ?(Sz) # @ follows from Theorem 2,1 which states that
p('r') # 9 and that P(sz)gp('r').

The theorem gives us no assurance that if S1 is a proper subset
of 82 thenﬁsz) is a proper subset ofﬂsl). This 18 in general not true,
either, However, there are many cases where choosing a proper subset of a
set of situations yields a larger set of avallable winning strategies,

Let there be some evaluation function which associates with
every subset of S a number which yields the "ease" with which it can be
described, Then with each strategy P we can asso :te a set of numbers
each corresponding to the eagc with which an equivalence class of its
Kernel (PoP'l) can be described, The minimum of these numbers can be ugod
as a measure of the "ease" with which P can be used. Associated with each
dubsget S1 of T', then, is a set of numbers, correspording to the ease with

which each strategy in P(Sl) can be used. Let the minimum of these be
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. L L = TP )
Cenci ea by E{b,}. Since, by the above theprem SIQ :’2 tmp) Loy S“’z"::ﬁsx"
it 1s not hard to see that §, g,sz implies E(S,) > E(8,). If it is required
to find & winning strategy only for all elements of §,, it nuver insreases
the szse of applying = atrategy by chooalng one which {s a winning strategy
for a set larger than Sl'

The above glves plausible arguments for restricting ones
ambitfon to find a winning strategy for the smallest set of sftuations one
can "get away with", The arguments certainly are not rigorous. It has
been assumed that all sets of numbers have maxima, It has been asaumed
that "eese" can be measured by numbers or at least by a linearly ordered
set, 1t might be interesting to investigate the effect of relaxing these
agsumptions on the validity of the arguments. This will not be attempted
here.

The ease of describing a strategy is only one of the problems
asgociated with the concept of strategies. The:e still remains the problem
of finding a strategy. In the following sections it will be pointed out
that a winning strategy P can be found if certain subsets of § (other than

the equivalence class of PoP'l) can be easily described.
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Eva.gations: A HNethod tor Defiu;gg Strutegleo

All the prévious discussions in this Chapter lead to one i or-

tant conclusion so far; to wit "In a W-problem, a winning solution for L
L

can be [ound if one knows the description of the equivalence classes of

the Kerael of some winning strategy for so“. In the rest of this chapter,
some similar statements will be made and proved where the worde "the

equivalence classes of the Kernel of some winning strategy for so" will be

replaced by the names of other classes of sets, A posteriori, these also
yield methods for constructing winning strategies for 8, and these con-
structions will be discussed, The problem, "Given the definition of a

class of sets, how does one construct their description?" will not be dis-

cussed till after description languages are introduced in Chapter IV. Unfor-

tunately, even there the discussion will have to be sketchy,
A class of sets that readily comes to mind arises from one's

desire to know how "far" a situstion is from the '"nearest" winning situation,

This can be formalized by defining an enumerable clags of sets T, as

t .

follows K
TO=T

and for ali { >0 !

t ;

Ty = (s]s ¢ ng T, and @QE)(f ¢ F, and f(8) ¢T ) i

|

In words, a situation is in T if and only if there is a con- !

W 141

trol which moves the situacion to one Ti and no control which moves it any %
"closer" to a winning situation, The "distance" of any point from the winning

situation is the minioum number of steps of elementary controls which changes

T e

it to a winning situation,

It is clear from the definition that { 4 § implies TL(1 TJ =@,

For assuming (without less of generality) that j < {, one can obtain from




definttton 7. €5 - \} 7. € 5.7 (f } < L. One can alan see that:
1= LRI 3

Theorem 2.5 1In a W.problem nQQUT‘if and only 1f s €T or a winning

solution exists for so.

Proof: i

One notes inittally that s ¢ k\_Jo T, and (FE)(E ¢ - and £(s)

€ Ti) —ysd‘“l or

i
(E)CE eF_ and £(s) ¢ T RIETIC Y h T s8e Ty )
or L
@f) (£ €F, and £(s) ¢ Ti) +(8 ¢ kgo Tk or 8 ¢ T1+1)
o 1+l
( EX(E el-‘o and f(s) eTi) -8 Ek‘;{) Tk
from which one obtains
1+1
) (£ e}'o and £(s) ¢ U Tk) -8 Ekgo Tk‘

One now proves by induction the following (yielding a stronger
statement then the "if" part of the theorem),

n
If fn(fn_l(...fl(sc)...z ¢ T then 8, ¢ U T For n = 1 one

i=0 "{°
obtains fl(a) €T = To yields s ¢ k‘fo Tk‘

Let the thenre{a-be ture for n = i that s, ageuwe fi(fi-l("'fl
(8)...) T ylelds s e M 1. Let £l (F e (£1(8)...) €T constder

fl(go) = 8,. One has
fi_’_l(fi(--bfz(‘l);‘o-) T

i
ylelding by induction hypothesis 8 ¢ kgo T,. Since fl(ao) =8 ¢€ g
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1+1

] l’ T

0 kald "k
proving the theorem for all n,

To prove the converse, let 8 ‘E?Ti‘ Then there exists an n
such that ', € T“. The proof wiil ba by fnduction on n, as before that
either n ~ 0, or there axists a sequence f,,,.f of function ¥ such that
fl(fz(...fn(lo))c T. Let n w 1, then by definition there exists fl € Fo
such that fl(ao)c T.

Assume as induction hypothesis that if s rt, then for some
fl.octfl

fl(f2<”'fk(’0)".)c Tu

Let s, € T£+1. Let ft+1(s°)e 'r1 hence there exists a sequence of functions

fl...f1 such that
fl(fz("'fi(fi+l('o)"')E T
proving the theorem for all n,

The class of sets [Ti} will be calied evaluations,

A Strategy Q will be called an Evaluating Strategy if and only if

s ¢ 'I‘1 implies Q(a)(8)e TL-I‘

The following theorem is a special cage of Theorem 2,1, relevant
to W-problems and hence to problem-like M-aituations and establishes that

(V)
150 Ty = T'-

Theorem 2.6 An evaluating strategy is a winning strategy for every member

of iyori.
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pProof:

Let » ¢ 50 Ti; then for some n, 8 ¢ Tn' n >0,

If n = 1, then Q{8)(s) ¢ T showing that Q is a winning strategy
f .
or Tl

Let Q be a winning strategy for all s ¢ Ti' Let 5 ¢ T1+1’ then

by definition of Q

Qsd(s) T

Since Q is a winning strategy for Ti’ there exists a mequence fl' fz, "‘ft

such that fi(fl-l"'fl(Q(') (8))...) €T; and

fk = Q(fk_l(...f(Q(g)(s))..,) for each k < 1,

Hence Q i{s a winning strategy for s.

The next theorem shows that one can make the following state-
went, "T{ there is more than one evaluating strategy, then it is unnecessary
Lt~ use any one of them consistently to arrive at a solution". Formally,

it can be stated as follows.

Theorem 2.7 Let [gd) be & partition of fEJFO 8¢ -~ T. Let [qa) be a set of
evaluating strategies, Let K: (ﬁul —o{QB] associate & strategy with each
class of the partition. Denote by K(%I)/qz the restriction of K(SQ ) to

Sy Then%g K(S, )/, is an evaluating strategy.

Proof:
Let 8 ¢ %1' Then$¥ K(Sa )/%z(s) = K(§1>(')' Siace K(ﬁz) is

an evaluating strategy if s ¢ T

i then K(gz)(n)(n) 3 Tl-l' Hence for all

8 ¢ Ti’




Vi sy 1,

proving sg K(Sﬁ)/Sa {s an eveluating strategy. That domain of %{ K(sa)/su ta
as required for a strategy follows for the deftnice of (S ).

in view of this theorem, it is now not necessary to know the
description of the equivalence classes of the Kernel of a specific evalu-
ating stretegy to apply it, All one needs to know is that some evaluating
strategy is betng applied. To assure oneself of that, one nueds to know
the descriptions of the outa T, instead, Knowing these descriptions, one
can find a winning solution for s by finding out that s ¢ TL and obtaining
control £ ¢ F, such that f(s) ¢ Ti-l' 1f Fy is a tractably small set, this
can be done by ¢numeration., The resulting sequencec of applications of con-
trols will be sccording to some winning strategy and yiold a solution, If

Fo be infinite, there is no claim that this met'.od of constructing winning

situations is in any way realistic,

v 01 o 11
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B, Strategios Based on T!

Thi construction of evaluating strategies depend strongly on
having available the description of esch ret TL in an avaluation In some

special cases, it may be possible to develop & strategy with a much smaller

repertofre of descriptions, In whet follows & method for strategy-construction

will be discussed which merely needs a description of T'.
Given & W-problem «38, Fo, T> one can define a ralation K! on
S as follows
ak'b if and only {f for some f G'Fo' b = f(a). Let K be
the transitive clogure of K'. K ie¢ the property that if akKb, then one
can change situation a to situation b by the successive applications of con-

trols.

A W-problem will be called progressively finite {f and only if

El. K is irreflexive, L.e, no situstion s Ls such that
sks (no "looping" 1is possible),

F2, There¢ {s no infinite chain s, ,8.,8.... such that for

— 1'72'7)

each { |£K01+1

Fl effectively says that each action taken o the way to solving
a problem L8 "irrevocable", In a way this is a very comfortin~ situztion,
since no matter how "blindly'" one applies confral, ~ne never gets "caught

. loop".

F2 essentially says that the process of applying controls always

vreaches a "dead end”. This prevents one "going on forever" on an "open-

ended loop",
Neither the Tower of Hanoi problems nor propositional calculus
described in Sec, &4 are progressively finite, There will be occasion to

exemplify the analogs of progressively finite problems in the next Chapter
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whery the game of Nim is discussed, For the present only aowe forwal proper-
ties of progressively fianlte problems will be discussed.

K, being a irreflexive and transttive is necessarily anti-
symseatric, Thut is, it h the two essentisl proparties of a partial order,
Every chain {n this order, being finite, has & lower bound. Hence the
Aet of situations have & set of minimal elements,

The =most useful thing about progressively finftaW-problems L=
that a description of T! and {as a part of the problem spacification) T is
411 that is needed to conatruct a winning strategy. To see this, one can
define the following kind of a strategy.

A strategy Q: £9F E’.f

-T _.Po is called cautious Lf and only
o

if
8 ¢T' {mplies Q(s)(®)e¢ T'U T
Evidently, since every evaluating strategy is a cauticus strategy,
cautious strategies exist. However, the fmporctant thing to note f{s that every
cautious strategy is a winning strategy, whether it ts an evaluating
strategy or not, as long as the problem is progressively finite, This can

be seen in terms of the two following theorems,

Theorem 2,8 Let? be & progressively finite W-problem, Let 5, be the set

of minimal elements of K, Then S - TE §-1.

Proof:

¢ So if and only {f there is no f ¢ Fo and no s' ¢ S such

that f/s) = »', Hence

Thie leads to

—




Theorsm 2.9 In & progressively finite W-problem every cautious strategy is

& winning strategy for every element of T°'.

Proof:
Let 8 ¢ T' and Q & cautious strategy, Define a sequence {'is of

situations as follows:

By ™ Q(si)(’L) for all {.

It {s clear from the definition that for all i, siK°t+1‘ Hence
the sequance ‘51‘ i3 finite, Let s, be the minimal element of this chain,
1£ 8¢ T for some 1 < t, then the sequence Q('o)'Q(GI)"'Q('l~1)
15 a winning sequence showing that Q is a winning strategy for 8, 1f
8, ¢ T for all { <t, then, since Q is a cautious strategy s, ¢ T' for all

‘.S t. Henca L T' in particular., However 8, ¢ S being a minimal

o'
element of K. Also s, ¢ Twhaxe 8, €S, - TE S - T' by theorem 2,7 which
contradicts 9, « T,

It can be stated in a way analogous to the dizcussion at the
end of the last section that for applying a cautious strategy, the descrip.
tion of the . uivalence classes of ita Kermel need not be known, If one
has a situation s 7 T' and chooses f ¢ Fo such that f(s) ¢ T', one knows
that some cautious strategy is being applied, To prove this rigorously one

would have to prove an analog of theorem 2,7. This appears straight-forward

and need not be belabored here, Indeed, some may even argue that all thig

BT —a e - DR . wm———— ot B S
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"rigorous rigmarole" (even if it is considered vigorous -- there are many
small points slurred over in the discussion) does not yield any results

that one could not be gleaned intuitively. Indeed, most rigorous discussions

oiten take place only after some intuitive basis for them have been suggested.

However, rigor has the advantage that through it one can clearly see the
conditions under which the intuitively obtained results sre valid, This
gives & clearer insight into how aa intuitively feasible operation may be
improved when it is found to be unusable in reality, In our diecussion of
the General Problem Solver in the next two sections we shall endeavour to

explain the many reasons for the occasional failures of the GPS.
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9. Btrategies Based on Subgoals == the Gemeral Problem Solver tlé]

To discuss methods based on subgoals, it will be necessary to
discuss evaluations based on sets other than T One of the subgoal-types
used in the GPS s "Apnly operator f to situatioa 8", This is a trivial
operation L{f g ¢ Sf. Otherwise, one sets up the subgoal "Transform s so
that £ can be applied". This fs equivalent to solving 8 new problem, with
8§ and F the same as before but with T replaced by Sf. Any solution for
this new problem may be discussed in terms of evaluations, It iu probably
not essential to use the idea of evaluations. However, at the present
level of the author's understanding, any concept more general than evalua-
tions is apt to be hard to handle., Moreover, workers using the idea of
subgoals often have the idea of "reducing differences" iwmplicity in their
argument, So the use of evaluation as a cornerstone of the theory of
subgoals will probably not be an inherent limitation on the way workers
in the field interpret the term “subgoals",

Given a W-problem and a subset x!; S one defines a class of

sets ¥, .s follows

and for gll 1L >0
X = {n|. ) :i; X, and (Rf)(fe F, and £(8) ¢ Xl)}

As in section 7, we shall denote i%% xi by X',

One now defines a set of subsets (S of X', indexed

GUN TS
by Fo, as follows

B ¢ Sfx iff for some 1 > 0
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8 ¢ x1 and £(8) ¢ xi_l. The (sex) fe Fo are not necessarily pairwise dis-

joint. However v 3., = X', The class of sets (S
fe Fo £X

rather than a partition on X',

fx)fe F i9 a cover,

The GP5 sets up the goal "Apply ovperator f to situation ¢" in
view of the recognition of certain differencas between the winning set
{éither T or S8 for same B¢ Fo). The extraction of this differance does
not assure that s¢ Sf. For the purposes of the present discussion the sat
ng will denote the set of all situations & such that i{f the sub.p-cblem is
"transform s to X", the the subgonl,'ﬁpply f to x" will be set up,

Although the GPS is a scheme for directed search for aolution,
one can envisage 'Uifference tabled' in GPS which give rise to minimwru search.
A GPS-like algorithm will be gquoted late in this section which would be
effective on such an optimal decision table., Our main purvose in this
section willbe toset up certain conditions on the structure of the difference
table (the sets S:x) which are sufficient for the successful convergence
of that algorithm., The sufficiency will be exhibited with a series of
lemmata, Later on there will be occasion to discuss how one can make
modifications of the given algorithms to an exact replica of the GPS. It
will be indicated how the convergence can be assured even for a slight
relaxation of the axioms on S?K. The axioms regarding the sets S?x will
make explicit certain assumptions which are either tacitly made or hoped
for in literature about the difference tables, It is considered useful
to bring these "out in the open".

One assumes initially, of course, that the difference table is
such that if a situation can be transformed into a winning situation, the
difference table will indicate some transformation for it, This is re-

flected in axioms D1l and D3 below. Also, if a certain tranaformation is
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fndicated, then if the transformation is applicabie, the "distance’ between
the situation and the winning states is actually reduced., This is indicated
in D2 below, This reduction may be considered inessential and it may be
possible to prove convergences for a mors relaxed condition: for the presenmt
this assumption is made as a member of sufficient conditions only.
Another important assumption (which, perhaps, may also be relaxed) indicates
that if the application of a certain traneformation f is indicated, then any
other transformation ..ed for making f applicable does not carry the situa.
tion away from the winning set,

One reason for getting up the assumptions formally is to indicate
that the convergence of the GPS is difficult to assure intuitively. Hence
if relaxed assumptions are envigaged on intuitive grounds, the proof of
the convergence of GPS will have to be carried out with a certain standard
of rigor,

One concentrates on the following class of sets

D =7} U{sflf eFo‘ .

A class of sets fsgx|f ¢ F

o! X ¢ D} i now defined with the

following properties

2}. For each set X ¢ D and each £ ¢ Fo' X' = fg)F £x
<]
Dz. Sex £ @ implies

94 s‘;xn S¢ € S;y for each £ ¢ F, X €D,

o U .o
Rd. Sgy - sfsge F, sgSf

o
D4, s ¢ (Sfx - Sf)n xi, and s ¢ S8 implies g(8) ¢ S‘f’xf\ xj

vhere § < 1,
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An algorithm wmodalling tha GPS (togethar with suggestions for
making the model more rsalistic) will be given presently, Meanwhile, the

following sequence of lemmata will {ndicate the convergence of the algorithm

&s presented.

Lemna 2.10
)
S;e =8
fSE
Proof

o
stfn 5¢ € stf by D2, Hence, intergecting both sides with S¢

(]
Sgs NS¢ € Sgs NS¢

]
However, by definition sfsfg S and SIS, ¢. Hence sfsfn 5¢ = #.
Contrapositive of D2 yields S:S =@.
f -
Given an element 8 ¢ T' one can get up a uquenceixi(s)} of

elemants of D (called a difference sequence) as follows:

() = 7.

°
Since s ¢ T' there is an element f ¢ F, such that s ¢ Sfxo(‘) by
pl. x'(s) is defined to be S,. For all L > 1, X**I(s) ts defined if and

only if s lxi(s). In this case s ¢ §° 1 " x"(u) where x"(l) ™ Sf for
£X° " (s)
some f ¢ F_. By D3 there exiscs s g ¢ F_, such that s ¢ s° . x“l(a)
) o sxi(')
is then defined to be Sg. Clearly g ¢ £, since in this case s ¢ st
£

which contradicts lemma 2,10 sabove.

A difference sequence is siid to end at L if x“l(u) is undefined,

Lemma 2,11

1f the sequenceixi(l)li

any { <n.

0,1,...n} ends at n, then X"(s)# Xi(s) for




|
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groof

n

1f X +1(l) is undefined, then s ¢ x“(n). 1f x"(o) - x‘(.), then

L Xl(s) whence xi+l(a) is undefined, contradicting the hypothesis,
The difference chain(bequence)for an element s€ T' Is not necessarily
unique., However, the extra assumption will be made that
_D_i. There is an integer N such that for each s ¢ T', all
difference sequences end at some { <N,
Lemma 2,12
Leti'xi(u)li = 1,2,...n} be a difference sequence for s, ending

at 7, Let x“(s) =S., and xi(s) = s8 for all £ > 1, Then f(8) ¢ s®

£ 1 8,X “Ns)

for each 1L > 1,
Proof

By lemma 2,11 f ¢ 8y for all i(1<i<n), Also, by definition

of difference sequence s ¢ s°

f-1. " S8 for each i(1 <1 < n). Again by
By

X (s) i

Dl, 8 ¢ (xl'l(a))' vhence 8 ¢ xi'l(s))j for some j, Hence

i-1 o
8 e(s° [, -5 )M®XTHs)),. Since f 4g,, by D4 £(s) e8° , ., .
gxl(a) 8 . ¢ g x e

Lemna 2.13
Under the hypothesis of Lemma 2,12, if 8 ¢ (xi(a))J for each {,
i
i
then f(8) ¢ (X (n))ki where k(.S 3.
The proof follows a-forteriori from the proof of Lemma 2,12
Let {Xi(s;‘ be a difference sequence for s ending at n. Then

° {1 for all 1 < n, We can prove the following rather crucial

g;X  (8)
lemma,

Lemma 2,13

For s ¢ s° i-1 , either 8 ¢ xi(u) = S8 or there is finite
gx " (s)

i

o e

. e

B e Y S
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sequence b by, Ly (hy € Fo) such that hy(hy (b)) e8°
) 8, X (8)
i
8 .,
N 5,
Proof

This 1o trivially true 4f { = N, since s ¢ s°

B
SNXN-I(') n SSN QSBHXN-I *

S
N-l(s)n gy

by D5, FPor L = ¥N-1, if s ¢ 5 , then s ¢ 5

-1 (s)

Algo from the proof of lemma 2.12, s ¢ (x"‘l(.))k for some k. Hence Sﬂ(') €

(Xu"l(s))k_1 by definition of § . Algo, be lemma 2,12 By(8) « §°
Bt () By1X
Hence there exists a g!; {(by D3 and D5) such that gN(c) ¢ s° ﬂ s°
ORI

vhence g&(gn(n)) € (anl(s))k_z. 3y k repetitions of this process one obtains

N-1

an element as indicated in the theorem,

Let now this theorem be true for i = k., Let s ¢ S°

k-2, ,°
gk-lx (s)
If s 4 xk-l<.) =S then by D3, » ¢ s° kel . Either 8 ¢ § or there
8.1 g X () &y
ts a finite saquence {h |h P 1 <n} auch that b (b ..hi(s)..) €5, .
o - - n ne 1 8y

If for some §, hj(hj-l"'hl(')“') € X~ "(s) then the thecrem is proved.

Otherwire, let s ¢ (X{3))_ . Then g (b (b ...hi (o). ¢ X5 Hay) L By

m-1°
a finite repetition of this process one eventually ar:ives at an element
st ¢ xk'l(-).

One can now state the basic result of this section. Let By € T'.
By considering the above lemmata one can see that if all the elements of a
clags of sets{sgxlf eF, X ¢ D‘ can be recognized, then the following

process will generate a winning solution for 8, in a finite number of steps.

N-2(4)
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1. Set kwl, j=0, 1«0, lue x* =T,

2, If lj € x‘. go to step 4,
3. If . ¢ Xy, tind £ such that s

)(:'L = Sf. Return to step 2,

4, If X1 - T, Stop.

) € sle set § = 141,

5, 1f xb - Ses 8CE 3 = 341, 8y = £(8, ), set (funct), = €

set k = k¢l, { = L-1., Return to Step 2.

A clags is:x|f € Fo' X ¢ Di,nlwnya exists, If ng - SfT

o . U
and Seo £5 *feF, Ser

B8 g
D2 is satisfied since Sfx¢5 Sg for all X, D3 is satisfied since Sex- S¢ ie

for all £, g ¢ Fo. one has T! satisfying D1,
empty., D4 is also satisfied since the antecedent is false, D5 is satis-
fied for N = 1 since X'(s) = 5, implies » ¢ szC S, hence X' (s) is unde-
fined, However, the set of classes of sets ‘S£x|x eD, f ¢ F" may be
mich richer than the consisting of only the class {éfrlf € ng\]‘bfs |£,
g8 ¢F I Hence for some of these classes {S ‘ may be easter to deocrlbe
in a given language than {SET%' Hence, in epite of the fact that the
fsf'rt are (at least conceptually) constructively defined and che{s:x‘ are
not (Dl1-D5 are far from constructive definitions) so definable at present,
does not perclude their usefulness,

The above discussion is intended to form a mode! for finding
solutions which have very close analogies with the General Problem Solver.
The intention was to set up the s?x as the Kernels of ma,. mapping every
0

point to some specific difference with X, It will be noticed that Sfx

Szx(sif) is not necessarily empty. It is this fact which gives rise to

the non-uniqueness of difference sequences, If one relaxes the condition




LA m— At S v i w R BN A o . B - . o,

- 72
D5 to read, "fur wach & ¢ T', &t least one difference ssquence ends at some
1 < N' and {f the number of non-disjoint S:x for a given X is finite a amall
medification can be made in the procedure to find such a difference secquence,
It Appearg from a perusal of the flov.charts of the GPS that the occasional
"back-ups" are caused by such a search, The ssarch can be cut back even

further by the fact that Lt Ls useless to have x’(.) = xi(a) in any difference

sequence, by virtue of tha following lemma,

)l

then {Yi(u)z is also a differencr sequence, vwhere

vi(e) = x*(s) for 1 <k

vie) = xRy for k>

The proof will be left to the reader, The point that is to
be made Ls the above model need not be the most faithful model of the GPS
and that more faithful models can be built, However, no matter what the
model {s, Lt may be worthwhile to consider the exact conditions (like DI to
D5 above) under which the model can be used for finding winning solutions.

When a GPS-1ike program meets with cccasional faflure, the need
arises to modify the distance-transformation table., Such modifications may
be made in a directed manner if ore can pinpoint the failure to one or
other of the conditions required for the convergence of the procedure for
constructing winning solutions. Of course, to enable much a process, it is
necessary to understand the basic structure of the W-problem involved.
Often this structure is ill-understood and difficult to understand, No

attempt is buing made here to iynore the difficulty. However, the basic

-
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structures presented here do indicate mome well.directed avanuss which

help to decide the directions in which understsnding should be attempted,
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10, Sundry Rematrks gg;grdianSnnrch for Winning Sequences

fn 9ections 7 and B methods were devaloped for defining strateglias
in such a way that the use of the strategy did not need the recognition of
the aleménts of their Kernel, In Section 9, hovever, whet was described
was @ procedure for constructing a winning sequence, It will be noticed
that for finding an element £, of the winning ssquence one not only used
the potnt &, but elso kept in mind the previous procedures used in finding fk
(notice that in Step 5, 1 was set to i-1 after the finding of Ek' not to
1), It is possible that one can use GP8-like procedures for defining
strategles;: (for instance {f f 4 g implied S:x(\ s:x = ¢ for all X, one
could eas{ly transfer control to 1 in the procedure) however, it in not
clear that one should limit oneself to the coucept of strategies as a
methiod for solution construction.

Two remarks connected with the Tower of Hanoi come to mind
here. The reader may verify that the following procedure generates a vinning
solution for < (1,2,3,...n), 9, @ >.

1, Apply (n,(-1)™)

2. 1f the resulting state = < §,(1,2,...n),d >, Stop.

3. In the resulting state < (XOI"'XOiO)(xll’"'xlil)

(lepoch2t ) >|
2

Let X, nn, Find max (X X, )=X . Apply (X §), vhere & s
ktk a, jik jlj' nin tt: tic’ '

such that t+s(mod 3) # k, Return to step 1,
In words, "Move the smallest disc, Then make tha only move
possible without moving the smallest disc. Go back to moving the smallest

disc, Always move the smallest disc L{n the same direction",

& aweaere—-
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Thie procedure does not yield the winning solution for all sftua-
tions, once in 4 while getting into a "loop". However, for the cases where
it dous yimld a solution, the solution coincides with the one obtained by
the previous strategy of section 6,

In neither of the above cihses was Lt clear ap to how the pro-
cedure for obtaining the winnlng soluvion was discovered, The following con-
siderations seem to lead to a more "natural" way of obtaining a solution,

One realizes that, Lf the situation < (1,2,...n),%,0 > has to be
coverted into the situation <0, (1,2,.,.n),§ > by applying controls as
restricted by the rules given, it L& necessary that 1 be "moved" from the
first to the second position and for this all the other discs have to be in
the third position, Hernce one must, sometime {n the course of azplying the
controls, obtain the state <(1),9,< 2,3,...n 5>, which then is clanged to
e 9,(1),(2,3,...m) », It is alsc clear, that now the set ot discs
{2,3,...n) can be moved back to the second position: one can apply a
sequence of controls very similar to the ones needed to move this set from
the first to the third positfon. It {s aleo clear that the problem of
going from «1,2,...n),,00t0 < (1),0,(2,3,...n)> 1s analogous to the prob-
lem of going from <(1,,..n~1),9,0>t0 <9,9,(1,2,.,.n-1) >, These conditions
lead naturally to the setting up u recursive procedure, to be called, "Move
(Pyp+l,...n) from position k to position £' (ks0,1,2; 2=0,1,2; 4k)", The
procedure f{s as follows:

"If p an, move n from position k to position £ (apply (n,t)
where k+t = f(mode 3)), If ndp, move (p+l,...n) p from position k to position
m (m#k,i). Move p from position k to position i, Move (p+l,...n) from
position m to poeition ',

The overall procedure then is "Move (1,2,...n) from poeition O

to position 1",

i am s -
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What has been done above is to eet up the idea of s 'Macro-
control” M{p,p+l,...n; k, #) which consists of sequences of elementary
controls, The sequence, as shown above in words, is generated by the
following definitions,

1. M{pik;f) = (p,t) where Wit = 2 {(mod 3)
2. M(p,p+l,...n; ki £) = M{p+l,...,n; k; m)(p,t)M(p+1,

ceepfis mi 2£) where m £ k,‘

If one now expands M(1l, 2,3;0;1) to generate a winning sequence

for < (1,2,3),0,0 > otne obtains the folloing sequence

M(1,2,3;0;1;
= M(2,3;0;2)(1,+1)M(2,3;2;1)
= M(3;031)(2,-13M(3;1;2)(1,+1)M(3;2;0)(2,-1)M(3;0;1)
= (3,+1)(2,~I3,+1)(1,41)(3,+1)(2,-1)(3,+1)
yilelding the same solution as in Section 4,

From here, it is a matter of perseverance tc¢ show why the
strategy of Section 6 is a natural consequence of the above recursive pro-
cedure, This will not be attempted here. However, the point has to be
made that since the function M(1,2,.,.n}k;f) wao not in the original
repertoire of elementary statements used in describing the rules of the
game, this does not throw any light on how one can mechanically generate
this function fro~ the original rules. For a discusaion of these points
see Amarel [15].

However, all thess considerations do shed scme light on what
is ~ften called "Method of Subgoal generation" in literature, Here the
term will be used somewhat more strictly then 18 often used, to give soae

concrete meaning to the discuesion, The discussion, however, will remain

informal.
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Given a W-problem < §.F T and an element 8, ¢ rj, <y,
T, 18 called a subgoal for 8, 1If k <m<j and Ta -il“ , a unit set,
then the pair (n'.Tk) is called a sub-problem for L In the above case
of the tower of Hanol, the {nitial gituation is an element of T aelt the only

2
element of the T noy that need be considered is < (1),9,(2,3,..,n) >. The
27 .2
attainment of this subgoal T ael leads to two successive sub.problems
2772

el ) vhers T jd,(z) {2,3,...0) >} and
( <9,(1),(2,3...n) >, {< 2, (1....n)¢ >-f) The advantage of this kind

( <(1),8,(2,3,...n) >, T

of breaking up of a problem into sub-problems is evident in the case of the
Tower of Hanoi -- the succesgive steps in the bresking up exhibits the
entire winning solution! As to whether this is feasible in all cases
depends heavily on whether the language of discussion is strong enough to
indicate that some c¢f the sub-goals are unit sets, i.e,, when there are
unit subgoals, Very little research has been done in this ar=a, even
though words like subgoal and 'sub.problem' ' . been around ever since the
inception of the field, The reason may very well have been that the advan-
tages of precisfon of definitions have been consistencly overlooked,

It ought to be pointed out that the idea of subgoals has mean=-
ing even when subgouals are not unit sets., The reason for this is as
follows, 1If 8,€ 'rj and m < j and Fo is a finite set of cardinality, say,

k., Then there are at most km“j possible control sequences, at least one

of which leads to a situation in Tm. From this situation, at least one of
at most k™ sequence3 leads one to a winning situation, Hence if 5, can be
recognized to be in Tj and Tm can be recognized, a total of at most ™+ kj-m
oystematic searches ure necessary instead of the kj searches that would
otherwise required in the absence of any knowledge about the Tj' Of course,

all this search would be unnecessary 1f T, could be recognized for each i,

i
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In the previous sections, the entire idea of searches have been
avoided, As {ndicated above, searches become necessary when any of the
techniques discussed in the previous sections (or similar techniques not
discovered yet) cannot be applied due to ones inability to recognize some
of the sets involved,

At present very little {8 understood about optimal sedrch pro-
cedures in the context discussed in this book, 1In what follows, a very
informal approach will be made towards setting up some ideas on the basis
of which search wmay be discussed. However, it ought to be pointed out at
the outset that search cannot be carried out with confidence -- even in
principle -- 1f there is no method for recognizing T'.

Given a W-problem (S,FO,T) one can associate with each 8 ¢ §

a set, F(8) = iflf € Fo and 8 ¢ Sf }; F(s), of course 18 given by the

rules of the problem, K(8) will denote the set of all linrear well-orderings
on F(8), Clearly, any element of K(s) is a subset of F(s) x F(s) and hence
a subset of Fox F,. Let B(Fox Fo) denote the set of all subsets of Fox Fo.
i.e,, the set of all binary relations on Fo’ By a search strategy will be
meant a function

ST: ] —yB(Fox Fo)

such that ST(s) ¢ K(8) for every s, For some elements of s (when s ¢ f%’? Sf)
ST(s) is the empty ordering, °

On the assumption that Fo is finite and T' is finite and recog-
niable and given any search strategy ST one can set up the following pro-
cedure for constructing a winning strategy for 8,€ T'.

1. Set i=0

2, Set xi = ST(si)

3. If 8, € T stop: indicating success
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4, 1i . ¢ T eet imial £f & > 0 and return to step 6, Other-
wise stop indicating failure,

5. If 8, = “) for some | < i set iwi-l £f 1 > 0 and return to
step 6, Otherwime atop indicating faflure.

6. 1f X; is empty set i=i-1 1f 1 > 0 and return to step 6,
Otherwise stop indicating failure,

7. Set (funct)1 = least element of Xi. Subtract (funct)i

from xi and store result as xl. Set i=1i4+1, (funct)i_1

(81-1) = 8. Return to step 2,

Such a procedure (an exhaustive search determined by ST) would

stop after a finite time indicating success for all 8, € T'. In a progressive-

ly finite problem (see Section 8) T' need not be finite for completion of
the procedure. However, the crucial point here {s the fact that this
finite procedure may turn out to be impossibly long if ST is not well

chosen, If ST(s) turns out to be such that its least element turns out

to be f where 8 ¢ § then an extremely rapid prccess will result,

fT*
One can say somewhat lmprecisely that most methods developed

by workers in the field consists of setting up efficient search strategies.

Most wethods dealing with problems of the W-problem type tend to set up

T

sets like SET’ S or T' as described in previous sections, These are

o
fX* “i
set up generally from common sense (or "learned" -- as later chapters will
indicate), However, it is kept in mind that the gets "guessed at" may not
coincide with what they are supposed to be so that when a certain control
applied to a certain situation does not lead to a winning situation one

caa "start over again" using a different control. This leads to something

in the nature of a search-strategy. In many cases, it hag turned out that

R s
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the search strategy so induced ig better than what can be expected from

an arbitrarily chosen search-strategy.

b lied ot SR At

Search strategies in literature are often based on what are

called "Intermediate Evaluations". In the point of view adopted in this

book, the Intermediate Evaluation Functions are mersly alternative ways

-
5
\‘.
&
7
5
3
3

to form descriptions of the f&ti or of T'. This will be discussed at some

length in Chepter III. It will suffice to point out here that since

et

Intermediate Evaluations are functions with the set of situatione as their

o

domain, their Kernels defines partitions on the situation-set :;.

There is a general belief often expressed in the literature

[

that problems can be best attacked by "going backwards" from the winning
situation, i.e., by successively generating members of Tl' T2, T3, etc.,
till 5, is located in some I,. This belief would be valid if these sets
did not grow exponentially with i, For instance, if the problem had the
i structure of a tree rooted at s, (L.e., if all situations s # 8, was such

that s = £(8') for an unique f and s') then such a generation method would

be highly efficient., Exactly the opposite case would occur if each situation

in T' was a2 member of sf for only one f and eich situation s was such that

LA r—

for each £ ¢ Fo' there was a situation s' such that f(s') = s, Here, it

might be better to "go forward".

T

The sbove paragraph indicates that search processes based on

enumeration of situations can only succeed in very special cases, Methods

Lkt Al d bS]

for recognizing such special cases have not been developed. Nor have many

methods been developed for constructing descriptions of the sets discussed

é in Sections 7, 8 and 9 from the description of the problem. It is becoming

increasingly clear that the use of the proper description language ie¢ a
very crucial matter here, This will be discussed in somewhat greater depth

; in later chapters,
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Before concluding this chapter and section it may be worthwhile
to point out that although a study of efficiencies of search strategies
has not been made in a rigorous way, it may be extremely worthwhile doing.
As clearer understandings develop of the sets discussed in this chapter and
more are added to this repertoire, the effect of errors in recogniring these

sets may be come clearer,
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CRAPTER II1 - GAMES AND SOLUTION METHUDS

1, Introduction

In the previous chapter M-situations were introduced as formal
structures and the ideas of forcing situations ard neutral situations were
introducéd, as well as the idea of winning and non-losing strategiea, Also,
an important theorem (Theorem 2,1) wes quoted regarding the existence of
winning and non-losing stracegies.

The general model above was then specialized to yield a class of
| structures which had one-one correspondences to W- problems. Also, it was
shown that winning strategies of these specisl clasas of M-situations could ;
be utilized for construccing W-strategies for the corresponding W- problems
and hence for constructing winning solutions, It was indicated how W- pro-

blems are adequate formal models for many problems studied in the field of

Artificial Intelligence, A number of alternative methods of constructing

winning solutions for W-problems were then discussed.

A simlilar sequence of discussions will be undertaken in the pre-

sent chapter, dealing with the formal model of a wide class of two-person

posteaset S0

board games. As is well-known the classical model of games can be specia-

lized to cover exactly the same situations, Many of the formal noticus

introduced will be superficially analogous to those introduced in Chapter II:

1. however, it is not clear that the ideas in Chapter II would be special cases
of ideas developed in the present chapter, Such relationships will not be
t digscussed. Also, as before, no attempts will be made to derive results as
special cases of results obtainable for M-situations -- even though it may

be possible in some cases,
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In the next section the special clase of M situations will be
introduced as models of game situations and the special properties of winning
strategies pertaining to these models will be discussed, In Sec, } specific
board gauwes will bs formalized to conform to the structure of these special
classes, In later sections methods for construction of winning strategies
will be considered, Here, as in the previous chapters, the importance of

the language for describing certain sets of situstions will be kept in mind,
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2, Game Situstions and Strategies

A Basic Game Situstion ts an M-situstion((S, C, D, N, §,, § D

with two pre-specified elements cocc and doi D such that

G1) scnsd # P implies either ¢ = ¢,orde do but not both,

The following facts are worth noticing

s =Us; 1 s, =U s
o d#dod do c#coc

Proof: Let 963, , then by definition there exists a d¢ D and
o

'€ S such that (s, co. d, s') &M whance le‘dl‘)p Sd. However o* sdo since

S. 1S, =9 byGl, Hence scgd% Sy
<] o o Q

Conversely, (f n‘Sd where d ¢ do. then by the same argument as above there
exists a c such that -csdns . However since d ¢ do' by Gl ¢ = co. Hence
c

sCS.. Hences, 2U) . s,.
o o akd d
The sacond p-rg follows similarly

Lexmna 3,2

1) s&S, and ¢ ] <, implies c‘ Sc
°

4 and d ido implies :*Sd

11) =4S

Proof: By lemma 3.1 lfsc and ¢ ¢ ¢ implies s€S; , but this
o

implies s€ scﬂ Sy which contradicts Gl,
o o
The second part follows similarly

The above lemmata indicate that ct‘J‘. Sc has a partition consisting

of S, and ‘;’ S . The same set U S coincides by definition of M~
A e, ¢ caC ¢
situations with leJDsd' This in its turn has a partition coinciding with

the previous partition, §, coinciding with us and ';J S coinciding
do cé6C ¢ d do d

with § : .
o
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The idea of basic game situmtion will further be specislized for

our purposes in the following way: A basic game situstion will be called

s ShWe s

a game pituation if it obeys the following additional axioms,

G c - - - us
2 SVUSL'S c‘z)c sc 5 dgb d

FeAET TS

G3) gg'stW Sq implies (co. d)(s) S - SH - ScD

: d - - 8
G4) 8¢ Scﬂ Sdo implies (e, do)(a) S SL 4

In effect the axioms say the following, ''The players play alter-

e ST T S TTRE

nately (co and do standing for “inaction"). The game stops whenever a win
or a loss is reached (it can also stop in a drav -- see definition of SD in
Chapter 1I). The oupponent ("disturbance'") cannot make & final move into a
win and the player cannot make a final move into a loss",

It is possible that the major points that will be made about game
situations can be made with much weaker assumptions than made here, However,
this fact will not be emphasized further in this book,

As in the previous chapter, the next paragraph will introauce g
somewhat simpler-looking structure which will have many properties in common
with game situations,

A board game is given by the S-tuple{S, G, F, W, L > where
§ i3 an abstract set, F and G sets of functions from aubsets of S into S and
W, L subsets of S, with the following properties

sy (Y sf)négcss) -0

B2) WAL« 0

. B3) wULC_s-Us-Us

£E6F 't g€EGC g

B4) sé¢ Sf and f€F implies f(s) ¢ § - L

£ F 5¢
' BS S_ and i s -w- U

) s8¢ BA geC implies g(s) ¢ S - W G 88

Given a game situation R = <S. C, b, M, Sw. SL> one defines

a 5-tuple B(R) = S, F, G, W, L> as follows




o
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1) W= 5"; L = 81.
11) VPYor each cg C, there {s #0 unique eiwment fe F such that

£, = (c, do) and these are the only members of F, Por each d D thareis

an unique element g4 G such that g, = {CF d) and thess ars tha only

members of G, fcé and ido aré not defined since (co.do)(l) is not defined.
Theorem 3,3 Given a game situstion R, B(R) is a bosrd game.
Proof: S is a set and W and L are subsets of S as requirad by the

definition of a board game, B2 {s satisfied since S“ and SL sre disjoint

by definition of an M-sicuatfon, It i{# clear from the construction of B(R)

chat Mg se- U s NSy - However, atnca s = Y. s by lemas 3.1,

Q [+]

V) U s u .
one huf p S %’ S, Sim“lrly 826 Sg ‘M Sg- Hence (U f

co(sc s, = 0 proving B1,
Now cc: "5 U che 4‘-) - (Hdo sd)u(c‘fs.:a sc)
- (ch')r 8 )U( G sg)

Similarly dUD 8y = (fu § )U( g s)

whence G2 reduces to B3,

dhd,

Again, a8 _ implies ugsS ﬂsd
€ ¢ o
and fc(n) - (c.do)(n). By G3, fc(l)és - s" - sdo

Givan a board gams B -(s. F, G, W, L) ons defines a 6-tuple

R(e) =« {s, ¢, D, M, § sL) as follows: .

w’
i)', Sw-w; SL-L
i1) PFor each fGF there is an unique element cf€ C. In addition
there is an element c°€ C. Thene are the only elements of C, Similarly

the only elements of D are d, and an unique element dg for each g&G.

B - - e et e e
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134) (s, c, d, 2')YCM {f and only 1f
either a) o w €y d = t'!s for some g€ C and s' » g(8)
or by ¢ = ce for some fE€F, d = do and 8' = £(g)
The following lemma is upeful for tying together the next theorem,
Lemma 3.4 If B is & board game <'S, F, G, W, LD then the follow-
ing {3 true for R(B)
fe* chg" dfd_ Sq
i1) s'd t? f cy 8

) e s (f'ZJr M% SJ d‘i”n Sq

Proof of 1
Let s€5, . Then there exists d&«D, s'€ 5 such that (s, cgr dy 8')& M.
o
By construction d = d8 for some §GG and g' w g (s) so that s‘S C gLeJG 8'

1f sGS then (s, ¢ 0! d!' g(a) )€ M whence s d%o Sd. Hence

< U
sco_ gcc g 'd&" 84-
Again, let “d% Sd. hence in particular sé¢ Sd . There exists
8
c& C& a'€&€ S auch that (n. c, ds. 8')EM. Hence ¢ = e, L.e. s' = g(s9)

whence s¢ Also Lf oesg, then (s, ¢_, d , g(s) )EM whence s €S. .

W)
g€ 6 5¢ °' g o
% ss2:¥
Hence SCOQ s Ssgd By S
i1) 1is proved similarly

0 U - y -
111) follows since ve S, sc})c cOsc ” ¢

d% saU's, den Sq-
Theorem 3 5 Given a board game B, R(B) is a game-situation,
Proof: Let (s,c,d,s')@M and let (s,c,d,8") @M. Ifc e €t
and d = dg. then g' = g(g) = 8", If c = cf. d = d then 8' = £(3) = g",
This proves M1, To prove M2 assume s ¢ Se N 4+ By lemma 3.4 (d#d d)n
t'.{ % -(Usm(Us) 8 by Bl efther c= c_or d = 4., Alsoby
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leua 3.4 Scn S‘j = f, This proves Gl. If s¢ Scn Sd, then by G1 (already

o 0
proved) either ¢ = ¢ . d = d8 whence (8, ¢ , d, g(8) )gMor c = e and
o

d= do whence again (s, ¢, d, f(s))gM. GZ follows gince

- cs - U -
SWUSL wuLes f‘FSf s‘ejc Sg

by B3,
es- (U sy U s))
(fGF £ L B¢eG g
TS Yo St 8 a¥n S
To show G3 one notes that sssc nsd implies M:S8 where d = ds.
o
Hence by B4, (c,, d) (s)= g(s)€S ~ W - E“l-Jc Sg =S - 5, - sco. G4 follows

similarly from B3,
It is algo inte "esting to note that
Theorem 3.6 Tf B is a board game and R a game-situation then
B = B(R(B))
and R = R(B(R))

Proof: Let B = (S, F, G, W, L)

R(B)

B(R(B))

<s, ¢, D, M, 8, 5.7
s, P' 6, W, 1)
Let f& F and £(s8) = s'. Then there exists a ¢_&C such that

£

(s, cg, do’ s'ja M, L.e. (cg, do)(s) = g' whence fcf(s) = 5', Hence f&fcf
Again if f; (s) = s' then (cf, do)(s) =35, i.e. (8, cg, d,, 8')& M which
£

implies £(s) = s' i.e, fcfg; f showing £ = fcf. Hence FSF'.

Let now £6F' and £ = fc where c€C, If fc(s) = ' than (s, ¢,
dy, 8')E& M whence ¢ = cg! for some £'€ F such that f'{s) =» s' whence £C f',
Again if £'(s) = s' then (s, Ceus d,, s') = (s,c,do,s’)c.M or £ (s) = s'.
That is £'¢€ f or €' = £. This shows F'= F,

The equality of G' and G can be proved analogously, This shows

B(R(B)) = B,

I v e T T

e e ———— s
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Let now R =S, C, D, M, 5, sL>
B(R) s, F, G, W, L>
R(B(R)) =5, €', D', M', 5, 5.

F has an urique element fc for each element c¢ C where ¢ # €y and

C' has an urigue element c, for each element fc & F and an additional elemeat

¢
¢, Hence the mapping chf between C and C' {s one-one onto, o is the
¢
napping di=> d8 from D to D', Denoting d8 by d end c¢ by ¢ these maps may
d d c

Lbe considevel as identity maps.
Let (s, ¢, d, s')e M; by Gl, either ¢ = ¢, or dm= do but not both.
let ¢ ~ <, then 3d(|) = 5', Hence (s, o dg. s')e¢ M', Since cl8 =d,
{8, ¢, d, 8') & M', Similarly if d = do' (6, ¢, d, 8') ¢ M'. Hence ML M',
Let now (8, ¢, d, 8°) & M'. Zither ¢ = ¢, or d = do by construction
of R(B(R)) tor B(R)., If c = s then d = 4;18 for saome d ¢D and gd(s) -s',
From construction of B(R) for R this is true only if (co, d)(s) =g', i.e.
(8, €0 8') = (8, ¢, d, 8')e M. Similarly 1{f d = do' (g, c, d, 8%y M,

Hence M'E M.
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3. Winning Solutions in Board Games
Theorem 3.6 establishes the similarity of structurs between Board

games and game-situations. Moat of the present chapter will deal with

board games. In the vest of this section the concept of winning solution

and winning strategies for board games will be introduced,
Given an element s, € ELGJ? Sgs & sequence F= (§.£

for all 14 i€ n), and a sequence 5.- (31.32,...3“.1; g,€ G for all 1,

L
181¢n), 5‘«111 be called compatible with F if and only Lf

f,(s )€ Ssl; 8,(f,(s.)))¢ sz;

£,(8,(£(s))) & sgz; B2(f, (8, (£,(s )))) € Sfa

asecsncsnsn
sssaveerae

3000000000

for all 1 ¢n-1

81+1(f1+1. ..sl(fl(so)...))e sfx+2'

Given s, € M, S and Fe (£,-..83 £, € F forall i, 1¢i¢n),

wiil be called a win ing solution for 8, if for each q- (81'82""8n-1;’

8,6 G for all 1, 1¢1i<n) compatible with ¥

fn(gn-l(fn-f"81“1(“,)”')e W.

As was indicated in Chapter I, the demand for a situation L
to have a winning solution is an extremely restrictive one, corresponding
to the demand for an open-loop control, The next faw definitions introduce

the less demanding ideas of winning strategies.

. - E

A function QF fUF Sf F is called a board control atrategy if
£ Q!. - impli S¢, Similarly a function Q : L) G

or all s, (s) f plies s & £ y e 0 ' 8¢ G SB is

called a board disturbance strategy Lf for all s, QG(') = g implies -ess.
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A board control strategy Q is called winning for aoe,s if there
exists an integer N such that for every board disturbance strategy QG there

exists gsequences (£1,£~' £ ; fie' F for all {1, 141 <n) and (gl.gz....sn_l:

2’ n
316 G for all i, 1 ¢i¢ n) such that
{a) néN
(b) Qr(‘o) - £ Qc(f1(‘o)) =8
Qpl8y(£,(s 0)) = £33 Q(E, (8, (£ (8)))) = 8,

for all i r-1

QF(gi(fi’..sl(fl(’Q)...) - f1+1; %(fi+1@1.--(gl(fl(so)oo-) -

Bi+1
Q8,1 (Eqee By (E (8 ).0) = £

and

(<) £ (8 1 (Epqee 8 (£,(8 )06 W

For the sake of brevity (a) may be expressed by saying, ''the
ssquences q-and ﬁ have lengths n and n-1"; (b) may be expressed by saying,
“the sequences ¥ and 33, are dictated by QF and QG”; (c) may be expressed by
saying, "the sequences } and % end s, in W",

The reason for calling a2 demand for winning solutions stronger
than a demand for winning steategies can be brought out by asking two
questions:

i) 1If there is a winning solution for 841 is there a winning

board control strategy for 8.7
11) 1If there is a winning board control strategy for so, is

there a winning solution for 8o7
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The answers to both these questions are '"no" in general. In what
follows a sufficient condition will be set forth for the answer to question 1
above to ba "yes'", (A necessary and sufficient condition can be developed
with u‘:m effort, but is not worth doing.) A counter-example will indicate
that the condition is not sufficient for the answer to the second quastion
to ba ‘ves",
A board game will be called free if for all f, f' ¢ Fand s ¢ S
fl(s) & s8 implies g(f(s)) & Sf, or g(f(s))el
Theorem 3,7 If in a free board game there is a winning solution
for 'o’ there is a winning board control strategy for 8ye
Proof: Let ¥ - (f1,£2,...f;) be a winning solution for 8,
Let QG be a board disturbance strategy, Define a sequence ch - (31,32,...3“_1)
as follows:
1 * Gy (s,))
and for all i n
81 = Q(f;(8y.1C(E5 1...83(E1(8,)...)
QG is compatible with 4 , since by definition of strategy
£1(8p 1 (Fyye o 81(E1(80).00)000) € S

and also, since the board game is free

i

8 108 1o 8 (£ (s)..0) € 5,

%Gt 5% Bo, 99

Define ‘sequence of situations T 8 ceee8y 1) as follows

QG,,B

80 °

and for each 1 { n

G %

%
8¢ = 8y(f5.4,(847,7))
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With each elemant s € fl;._jF S¢ associate # subset F_C F as followa:

P‘ = {fiﬂ\ 5 =8, for some strategy QG(
Define Qp: fgg S;»F as follows:
Qle) = £,

where k is the largest integer such that ‘:‘k‘?s' Qr(’) = f1 if F 1s

empty,

It will be shown that Qp is a winning strategy for s The proof

of
is by induction on n, the number of components in ¥,

Ifn=1, fn(so)e W.

In this case Fso -8, whence QF(so) = f;. Hence QF is a winning
strategy for s,.

Let now the theorem be true for n¢j. Let Qr(sy) = fy41. If

k=0, then (fz,...fn) is a winning solution for gl(fl(so)) for all g,

such that fl (so)e S_, and hence QF is a winning strategy for all gl(f!('o))

g1

such that fl (so)e 881. If k>0, then (fk+2"°'

for all gk+1(£k+1(s°)) such thgc fK-l-l(so)‘ SBR-H

fn) is a winning solution
and hence QF is a winning

strategy for s,

The converse of this theorem is not true, Consider a board game

as follows:

w
L

(A,B,C,B,F,6,H,1,J,K,L)
=

(x,L)

L] = [
| ]

(a,b,c)

<u,/9,-7)

(2]
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S, " 8y = 8~ (4,3,0,E,)
So ™ (G,H,I)
S’, = (G,J,I)
Sy = (H,J)
The functions a.b.c,a.f ,7 are given in tabular form below

and in graphic form in F.g, 3.1,

x  a(x) b(x)  c(x) y (y) 67 ()
A 1 G J ¢ c A -
B 1 J H H E - F
c H 1 J 14 A B -
E J K 4 J - c B
F L J 1

It can be seen by inspection that there is no winning solution

for A, However, the strategy Q? shown below is a winning strategy for A,

x Qp(x)
A c
B [
C a
E b
P a

The concepts of strategy in board games and game situation are
closely related and this enables one to {ndcate a theorem analogous to

Theorem 2,1 for board games,

Glven a control strategy Pc in a game situation R one defines a

relation B(Pc)_g SxF as follows:

T i s -

pom

SN

e e ——————

B
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Fig. 3.1
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(s,£) €& B(Pc)

A€ and onlv 4f B (x) 4 e and £ = chcl}, Similarly given a disturbance
atrategy PD in & game situation R one defines & relation B(PD) & 5xC a»
follows: i
(s.2)€ B(F))
if and enly if PD(I) ¢ d, and g = g?D(').
The following lemmata can be proved readily:
Lemma 3,8 If PC and PD are control and disturbance strategies in i
a game situstion R then t
i) B(PC) is a board control strategy in B(R) |
i1) B(PD) is e board disturbance strategy in B(R) S
Proof: Only (i) will be proved. The proof of (ii) follows identi- :
cally, ’ ‘
Oig gS¢ P 18t (5,9 € B(RD), |

then Pc(s) ¢ ¢, Whence B.‘c"!:o Rc = HFSE whence the d@in of B(PC) is

To show that B(Pc) is a function 3(P

PR
i

contained in U S Again, if s § Ek“’?sf. then s¢ c'ic § € Hence

feF ¢° o © clz‘csc'

Pc(s) is defined and Pc(l) ¢ Coe If Pc(s) = ¢, then (s,fc)eB(PC).

Hence Hrsf is contained in the domain of B(PC). Hence the domain of ’
B(Pp) coincides with é)F Sg. Ii (s,f)c B(P;) and (s,£f') e B(Pg) then

'™ fc and £ = £ by definition of B(R), Since f, is unique f = f' showing i

that B(Pc) is a function, E

Let uow B(PC) (s) = £, then Pc(a) = ¢ where f = fc. Since :

fulfilling !

8 (S;. by definition of control strategy and Sc = Sf . ic-Sf,
the condition for B(PC) being a hoard control stut::sy.
lLemma 3.9 i) The mapping PCwB(PC) is a one-one map onto the !
set of all board control strategies of B(R), Similarly (11) the mapping
Pp b’ B(PD) is a one-one map onto the set of all board disturbance strategies 1

of B{R),




.’ ,-

Proof: Let Pc and P‘c be two distinct control strategles, so that for at

l: } r ‘ - 1]
r least one 3 ¢ c_t‘}csc, Pc(a) ¢ Pcfu). Since Pc(e) ¢, for all s 55%, this
2 implies s* §, + Hence both B(F ) (s) and B(Pg)(s') are dafined, Lac

3 [~}

T bbb A

Po(s) mcp ' = Pé")' By definition of B(F¢) and B(P}).
B(Pc)(i) L B(Pé)(!) - fc"

But the gap chvfc is one-one by definition, hence ¢ ¥ ¢' implies

£, ¢ f£,1. Hence B(Pg) # B(Pp).
To show that every board control strategy Qp is equal to B(PC)
for some control strategy PC’ one conatructs the control strategy as follows:
' (1) c if and only {f Qp(s) = f¢

Po(8) =  (11) ¢, if and only {is ¢ ayG 5

(i11) undefined otherwise

Us -t
Pc 18 a control strategy, since Pc(s) ie defined for f“st cfcosc by

T VA

construction (1) and over Sc by conditton (1L), Also if Pc(s) = ¢ then
o

Qr(s) - fc. Qp(s) = fc indicates aesfc ~ Sc. Also Pc(o) = ¢, only Lf

é’ s(iSc » Again QP = B(Pc) by construction,

o
The most important thing ¢g notice about the mapping Pcbﬂ'B(Pc)

is given by the next theorem,
Theorem 3,10 In a game situation R, Pc is & winiing control strategy
for s € c&é Sc if and only {f B(Pc) is & winning board control strategy for
s, in B(R). °
Proof: Let F, be a winning control strategy for s, Then given
any disturbance strategy PD’ there exists a sequence (cl.dl)...(cn.dn) such that

€ = Bleg)i dy = Pp(s)

for each 1 n
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€41 " PC((ci’ "i’““id"’i-z)(“'(“1"’1)(% N

dygy = Pollegd, ) ((eyuy iy ey dy)(80).00)
and
(cn'dn)((cn.l !dn.—l)(o » -(cl vdl) (.o>)o . '} &V
S{nce sy ¢ Hcosc g ¥ c,. Also, dl " do. Aleo, since
(cn'dn)((cn-l 'dl‘l-l) ¢ '(cl vdl) (.0))' )G W,
orte obtains from the contrapositiva of G3, that
((cn‘l.dﬂbl). "(cl Id1)<'o))' l') e. scon sd
for mome d¢D. Hence dn - d0 + Hance,

€p ey ™ L6 ico. Cg ™€ ™ .euC g o

dp =dy= ..dy wd, dymdym.dpg # g
indicating that n is an odd integer; let n w Zuo =1,

Set fc2m-1 = £, for each m¢m and ‘dZn " & for each nz(mo. By definition

of B(R) for each m¥m £, = ( dg) = (C2pe119pg.y) and for each m < 8

ch-l
B = (cqidyg ) = (C2n + o)
reducing the equation

(cn!dn)((cn.lidn.l)(Ot'(clbdl)(.c)lo-) € W

fﬂ ("ﬂ ,1(.-.'1(f1(l°))...) « W,
[+ [+]

Also, for each even i, ¢y » Pa((cyeydi.1) (iuu(ey,dy)(s)). )

reduces to

£c1/2)41 = PelBy/aCEi/0p - 81 (£1(80)).00))
and for each odd 1

di+1 - D((cl'di)(..'(cl.d)(.o))'.)
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reduces to
B(ih1y/2™ Polfio1/8841/80 B (£ (8)). ).
Howaver, by definition of 5(?0)

Fe(8) ™ Sy

if and only 1f B(P;)(s) = f(i!2)+1 since ¢, 4y ¢ ¢y Similarly

Pp(s) = d14

! if and only {f R(PD)(n) Hence one obtains

" Beiny/2
£, = QF('o) - fli qc(fl('o)) =B

and for all { ntl/2 = m,
B(Pc)(si(fl(."sl(fl(.o)...) - f’.+1

B(Pp) (£541(8.--81(£1(8g)++0) = Byyy

. and
B(PC)(gln -I(fn _1...31(f1(s°)...) - £
() 0 (]
Since Pc is a winning strategy, B(PC) is such that for any board-
disturbance strategy B(PD) a sequence fl'fZ"’fmo'“d a sequence 31.32...3mo_1

will exist having the above properties B{PC). hence, is a winning strategy.
The proof of the "if" part of the theorem is left to the reader,
The theorem leads to the following inceresting corollary analogous to a

veak form of thecrem 2,1.

Corollary 3,11 In a board game B, there exists a board control

sirategy which is winning for every element s € fl;’p S¢ such that a winning
strategy for s exists,
. U U N
Proof: If 8€ ¢ gpSe in B then “c#c §, in R(bj., If a winning
o
board control strategy exists for s in B then by theoren 3,10 a winning
control strategy exists for s in R(B). Hence the set of all s ¢ ngst for
which a winning board control strategy exists is a subset of the set of all
s€S for which a winning control strategy exists, Hence {t follows a for-

teriorl from Theore: .,1 that there exlsts a strategy P, in R(B) which is




PRSI

B Y e S,

-100~

a winning control ctrategy for al'! elements of this set, a second appli-
cation uf Theorem 3.10, B(PC) will be a winning stratez; fo. all the elements
of this set.

It will be noted that Corollary 3.1l neglects to make suy state.
ments regarding non-losing strategies, It seems apparent that a stronger
form for Corcllary 3,11 could be obtained, MHowever, since most .f the later
discussion will be directed towards winning board control strat >gies for
members of fégrsf in board games, extensions to such stronger forms may
not be relevant at present,

A dilscussion regarding strategies and their descriptions similar
to that in sec., 6 of Chapter II is pertinent here., Corresponding to each
strategy Qp, QF . QF'I again defines a partition of fLe’ st. As pointed out
before, the major problem regarding the applicability of any winning strategy
(even when it is definable) lies in the ease of describing the elements of
the partition which its Kernel induces, Also, if one is interested in ouly
a small subset of situations, one has a greater freedom of choosing between
alternative strategies of varying ease of applicability,

The major problem regarding winning strategies, of course, remains:
"How does one find a winning strategy?" As in Chapter II, the later sections
of the present chapter will deal with certain aspects of this problem as
applied to board games, Initially, however, a few well-known games will be
described in the general format of board games, This also will be in keeping

with what has been done in Chapter II,

pryvan




4, The NIM Class of Games - An Example

This and the next section will describe two classes of well-known
games, As in Chapter I, the examples serve to illustrate the sultability
of the formal model of board games for well-kinown cases and provide vehicles
for discussion in later chapters,

The first class of games can be described in general terms as
follows. One has a number of piles of sticks on the table, Each player
in his turn removes a number of sticks from each pile obeying certain restric-
tions (for instance, "not more than one stick fram each pile,'" "sticks to
be removed only from one pile" and such like). The first player to pick
the last stick in the éile wins, (In some variants of the games the person
sho takes the last stick loges: but the difference is not essential and in
this book the rule will be as stated initially). Specific games in this class
vwill be distinguished by the number of piles, the number of sticks on each
pile initially and ( in a more fundamental way) by the constraints
on the way the sticks can be removed by each player,

The set S of situations in all of these games is characterized
by a set of ordered pairs (I,p) p detemmines which player is to move (this
will be formally stated presently), I is a sequence of n non-negative inte-
gers, where n is the number of piles and each integer in the sequence
denotes the number of sticks in each pile. Any situation s¢ S, then, has
the form ((11,12,...1n).p) where 1k is an integer for ecach k (1¢ k€ n) and
p is either the integer 0 or the integer 1.

Each element of the set of functions F has the form (x,0) where
x {3 a sequence of n non-negative integers x = (xl,xz....xn). Unlike the
sequence I, however, where any sequence of integers i{s permitted, x has to
satisfy some criterion according to the rules of the game. We shall specify

this criterion in general by a statement which x must satisfy {.e. such

that (X (x) is true for any x such that (x,0) is a member of F,
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Similarly, each element of the set of functions G has the form
(x,1) where x 1s a sequence of n non-negitive integers x = (xl,xz....xn)
i - satisfying some criterion F .
For any element (x,p)¢ FUG, S(x,p) L8 defined as follows
S (e1p) -{(t,p){ 14 ¥ %, for each k(1 § k € n)
i and for each (I.P)é‘s(xm)
(x,)((T,p)) = ((15,1,,...40), p + 1(mod, 2))
where for each k{1l ¢k $n)
ié =1 - x.
W consists of the single element ((0,0,...0),1) and L of the single

element ((0,0,,..0),0)., ©Of and /9 are 80 chosen that B? is always satisfied,
It is left to the reader to verify that Bl, B2, B4 and B5 are satisfied by
any specification in the class defined above,

The description of some specific games follow.

The simplest sub-class of games in this class occurs when nwl,
of = I% 5 (x3 €k) with a specific k. A typical game of this class,
may be "There are 15 sticks in & pile, Each playev in his turn takes away
at least 1 and at most 3 sticks from the board, The player who leaves an
empty pile wins". Here the initial state is taken to be ((15),0) or

((15),1) depending on who plays first,

A specific game in the larger class vhich is easy to analyze is

‘ : one In vhich n=2 and o T /3 z ((xl< 1) and (ng’ 1) and (x1+ x, ‘i D).

L With the initial state ((5,3),0) the game is described as follows, "There are

two piles, with 5 and 3 sticks. Each player, in his turn, picks up at least

' one stick, but not more than 1 from each pile. The player who leaves both

ot piles empty wins", ' i
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In one of the most well-known sub-class of this class of games

o/:/ﬂ m (Bx)kx,D>0and jét > x, = 0) that is sticks

are removed from one and only one pile, The well=known game of Nim belongs

MR a e — P WS - -

. r ewe e de et S = —— e L

to this class; in this specific game n=3, and the initial state is ({3,5,7),0)
or ({3,5,7),1) depending on who plays firat., It will also be of interest
to consider a more general sub-claas of this class of games where
drfs @x)(k2 x> 0and ) dtax, 0. o
These games will be referred to as various methods for find- '

ing strategies are developed in later secticns.
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5, The Tic-Tac-Toe-Like Games - Another fxample

The class of games to be disucssed in this section are of intercst .
in this book in view of the fact that a close examination of these bring
cut in a convincing and non-trivial way the close relationghip that exists
between the efficiencies of solution and description languages. The class

of languages will be described here without any ruierence to the description

language. The significance of the description languages to this class of
games will be discussed in a later chapter. A few well-known members of this
class will then be exhibited.

All the games in this class can be visualized as played on a ;
board consisting of a finite number of "cells". Two classes of subsets -
of the set of all cells are pre~defined, which we shall call.& and (B. The '
members of fi will be denoted by A (with or without subscripts) and will be kb
called "winning files for x"; members of @ will be denoted by B with or
without subscripts and called "winning files for Y'".

f In the beginning, each cell is unmarked. The players play alter-
2 A nately. The first player, in his turn, marks eome previously unmarked- cell E——
] with an "X"; the second player, in his turn, marks some previously unmarked
cell with a "Y', The first player wins if, on making his mark, a configura-

tion of marks is produced such that some winning file for X has an "X" on

each of its cells. The second player wing if, on making his mark, a con-
figuration is produced such that some winning file for Y has "Y" on each of

its cells.

Formally, with each game will be associated a finite set N,
and two claes_ﬂ and % such that ‘
13 Aeﬁ implies AC N

B 66% implies B &N

o B maem ot b
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One can assume without losing any essential aspect of the gemes, that no
member of,ﬂ 1s a proper subset of any other member of _Q ; and similarly
for 1’3. Another set with three elements ix.Y./\i will also be used in -
specifying any game in the class.

Given N, B ,® for a game, one defines a board game as follows:

Any situation e is a function from N into-{X.Y,/\g such that
the number of cells mapped into X is equal or one more than the number of
cells mapped into Y. Denoting the cardinality of set P by lP\, one may
say the above formally as follows

8 ¢ S 1f and only if s ¢ ix.Y.A&N and ((\s”l(X)\ - \x-l(Y)\) or
Gstao ) = st + )

sgW if and only 1if \s'l(x)\ - \s-l(Y) + 1\, there exists an
unique file Aeﬁ such that Agsﬂl(){) and there is no file B ¢ 63 such that
Bgs 1Y),

8 ¢ L if and only if \s—l(x)‘ -]s-l(Y)&;here exists an unique
file B¢ such that B < s-l(Y) and there is no file A ¢ f such that

AC a—l

(X).
Each element of F 1s denoted by the pair (m,X) where n is an
clement of N. Every element of G 1s denoted by a pair (n,Y) where u is

an element of X.

s € S(n’x) if and only if s@ S-L, ‘s-l(x)\ -\s-l(Y)\, and s( n) = A .
In this case ( n,X)(s) = s' where s'(m) = s(m) 4f m # n and s'(n) = X.
s €S yy if and only I s € S-¥, sreo) = 17Xl + 1 and

s(n) =A . In this case (n,Y)(s) = s' where s'(m) = s(m) 4f m ¥ n amd
s'(n) = Y,
As in the last section, it will be left to the reader to verify

that Bl) to B5) are satisfied by any board game defined as above. In what

follows some well-known games in this class will be described.
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The most well-known sub-class of this clase of games is the "n"

Tic-Tac-Toe" games, 32 Tic=Tac=Toe or "Naughts and Crosses" is the most
popular one among young childrem, 43 Tic-Tac~Toe is a game sophisticated
enocught to ba played by adults and sells under the trade name, "Qubic”.

In a general n" tic~tac-toe game the set N consists of n-tuplaes
of integers each element of the n-tuple being a non-negative integer less
than m. S, then is a pre-specified subset of ix,v./\} '“.

The classes 4 and® coincide in this class of games and consist

O e i e s RN RO

in the set of n typles defined as follows
A¢ R

and each fi(s) is either a constant between 0 and m-1 inclusive or fi(s) =g

[}

A= fiey eyt )| 0€a<n]

or fi(s) = m~1-8: but not all fi can be constant functions.

Basically, the above formalism states that a set is a file if it

consists of m cells in a straight line. The idea can be ¢xemplified by ;

exhibiting the picture of a Qubic (4x4x4 tic-tac-toe) board and two lines

on it, as shown by the shaded parallelopiped, One consists of the &4 cells
{(0.0.0), (1,1.0),(2.2.0).(3.3.0)} vhich can be represented by i(s.s,O)\
0884} . The other consists of the cells { (1,0,2), (1,1,2), (1,2,2),
(1,3.2)f which can be represented by‘ﬂ.s.Z)\O €8 < él . The set represented
by{(s,2.3-s)\ 0 ¢ s<4§ consists of the cella {(0,2,3). (1,2,2), (2,2,1),
32,0} . !

The files in n” tic-tac~toe are easier to deacribe intuitively

T 1 e e

for small values of n. However, something like the formal description given

i
above (which is just a parametric definition of straight lines in a "lattice") 4

is esgsential for machine representation. This particular representation of

.
— e

R

files as n-tuples of functions has been found useful in certain combinatorial . +
b problems associated with multiplicity of various classes of files in general

o® tic-tac-toe games.

Sy
i

i

i
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The 43 Tic-Tac-Toe Game

Fle. 1.7




Another well~-known game in the Tic-Tac-Toe-like class is Go-Moku
(also known as Renjyu, Pegetty and S-place Tic-Tac-Toe), The set N consistn
of cells in a 19x19 board &8 in 192 tic-tac~toe game. However, the files,
instead of being sets of 1% elements, are sets of 5 elements in a line
anyvhere on the board, Thus, the files 1nJﬂ and B consiat of seta of the
farm § (£,(8),2,(00)| © € s € 3§ uhere £, und £, have the fom K, X+ 8, K- 8

vhere K is any non-negative integer less than 1€ and more than 4: it being

specified that both fl and f2 are not constant functions.

In a third class of games the set N consists of arcs in a specified
graph with two designated nodes. The class A consists of all pathse
betveen the designatad points nnd65 the class of all minimal sets of arcs

whose removal separates the designated points. This is often described by

the second player, in his turn, removes one of theinvulnerable arcs., The game

continues till either an invulnerable path is established between the two

designated nodes or the nodes have besn separated. In the first case the
first player wins. In the second case the second player wins.

Ganes in this class are called Shannon games after their origi-
nator. Lehman [2/] has recently given a characterization of the class of
networks for which there is a winning strategy for the initial configuration.
The strategy given by him is characterized differently from the general

strategy for Tic-Tac-Toe-like games discussed later in this hook.

The most important difference between the Shannon games and the
o Tic~Tac-Toe ganmes lies in the fact that the classes A and ® are described

in a much more complicated way. This has a rather atrong import on the

i' way these games are played.
A specific Shannon game is commercially available under the name,

j "Bridg-it". It consists of the network shown in Fig, 3.3, with the nodes

saying that the first player, in his turn renders an arc invulnerable while ’
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Of and F pre-designated. The actual bridge-it board, and the way the gamz
is described, appears different from the above congideraticn. However,
Busacker and Saaty [R2] have pointed out thsat if ¢ andP are joined by an
extra arc, then the dual of the resulting graph is isomorphic to the result-
ing graph and the dual of the cut sets of this graph are paths between two
specific points of the dual graph (corresponding to the regions separated
by the extra line) with the arc dual to the extra line removed. In the
commercial game, the two opposing players play on the two dual graphs.

Another important game in the larger class of Tic-Tac-Toe like
games is the game of Hex. The set N conusists of hexagons on a honeycomb
structure as shown in Fig. 3.4, The class A has as membere all paths con-
necting the top-edge to the bottom edge. The class @ consists of all
paths connecting the left edge to the right edge. The figure exhibits a
winning position.

Before leaving the subject it may be worthwhile to point ocut that
every game in this class can be considered as a sub-game of a larger game
in another class. A description of this class will be introduced here.
This embedding will bring out certain essential symmetries between the
control and disturbance which will be of interest in a later section.

The specification starts with the same triple, N, A and® ; the
situations are ordered pairs {s.p f where p= QO or p =1 and s ({fx,Y,Ai N
without any restriction on s. Elements of F and G again have forms (n,X)
and (n,Y); however their definitions will be changed slightly as follows:

(e,p) € S(n'x) 1f and only if s € S-L, s(n) = A and p = 0. In this
case (n,X)(s,0) = (8',1) where 8'(m) = s(m) if m ¥ n and s'(n) = X.

(s,p) € s(n,Y) if and only if 8 S§-W, s(n) = and p = 1, In this

case (n,¥)(s,1) = (8',0) where s'(m) = s(m) {f m ¥ n and s'(n) = Y.




——rr

#lso, W and L are slightly re-Aefined as follows: (s,p)€ W if and only
if p= 1, there exists an uniqua file A Cﬂ such that A € s'l(xn and there
16 no file 8¢® such that B € a'l(Y'); {s,p) EL 1f and only i{ p = 0O, thers
exists an unique file Aeﬂ such that A € a"]‘(Y) and there is no file B
such that BSB-I(X).

The reader should convince himself that in the original version of the game
the situations were restricted to the set of first components of all situations
(s,p) of the new version which could be attained frow ((A, A,... A)y 0).

In a later chaptar certain subsets of $ associated with winning strateiges of

Tic-Tac-Toe-like games will ba pointed out and the merits and dravbacks of the

resulting strategfes will be discussed.
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. 6. Evaluating Strategies in Boa.d Games

The practical utflity of a winning control strategy is intimately related 2
with the ease with vhich the blocks of its Kernel is amenable to easy description. -
: Any comment that can be made regarding thisz matter has already been made in Do
Section 6 of the previous chapter. It is therefore germaine to move directly
to the digcussion of various methods for finding winning strategies. The discussion
in this section will roughly follow the same lines as Sections 7 and 8 of the
previoug chapters. However, due to the important role played by the disturbance
in a board game, there will be more to say about evaluations in board games.

Given a board game one can define readily two classes of sets {wi | 1)0; and
311.1\1)0 i as follows:

8€ wl if and only if there exists an f€ F such that f(s) € W.

8€ wiﬂ if and only {if sfwk(k‘ i) and there exists an f € F such that

Sk Sf.f(a)ésucs8 and for every g¢ G such that f(sje$

€ y 8 (f(s))ewk(ksi).

4
se L1 if and only if there exists g¢G such that g(s)e L.
sa Li-l-l if and only 1f s#Lk(ks i) and there c¢xists a geG
such that sg Sgg(s) ‘feur Sf and for every f ¢ F such that g(s)E‘Sf,
f(s(s))ELk (k £1).
~ y U ¢

It is clear that k31 kafﬂ. S¢ and kgl L ¢ SL‘JG Sg. The following also

can be shown readily.

Theorem 3.6 1) If s¢ kL>Jl wk, then there exists an £€¢ F such that s t':'Sf and
f(s U L, .
@f Y1

14) 1f sekgl L,» then there exists g€G such that s€s and
st lgl W
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Proof: Let s €W, € U W, . Tia proof will be by induction over k.
— k" k21 'k

Ifs g Hl, then there exists an f€ F such that f(s)EW &8 - U 5

gec
f(l)" 8"6)0 S' and kgl LEG g(é}c sg, f(a)f kgl L.

. Since
4

Let the theorem be true for e €W, (1<k). Let 8€W .+ Then there
exists an £¢ F such that f(s)& s‘éc s‘ and for all g such that s€S_,
g(f(s))C Ui(:l.{k). 1f f(n)iklg1 L let f(s)é€ Lp. Then there exists a g such
that g(f(s))€ gg pS¢ and for all £' such that g(£(s))€ Sy, £'(3(£(s)))e€ ﬁil L.
However g(f(s))e W, (14 %}, vhence there exists an f'€ F such that s&S., and
£'(g(£(s)))4 k\"’l L - This leads to a contradiction,

1i) can be proved similarly.

{ L’.} and §”1i will be called W-evaluations and L-evaluations respectively.

This idea of evaluations follow: the mode set by Chapter II., However, because

the structure of bourd games is Ticher than that of W-problems, some further classes
of sets related to evaluations can be utilized for the construction of strategies.

Before taking up such further structures-in detail, however, the results analogous

to those in Chapter II will be set down first. Theoreus analogous of Theorems 2.4

and 2,5 will be seen to hold true for board gsmes, again as special cases of

Theérem 2.1. In view of the more general structure of board games as compared to

W-problems, it will be more wmeaningful and easier to prove these analogs in some-
what stronger forms. For this, a few more initial definitions are in order.
Given a board gue(S,G,F,H.L) end an el:::nt 'o‘ £ .&-)F Sf such that a wianing

board control strategy Q? exists for s, one has a pesitive integer N such that

for every board disturbance strategy QG there exists sequences (fl.fz....fn l f 16 F)

and (gl,gz,...gn_ll gie G) which fulfills the condition set out in Section 3. The
integer n (less than or equal to N) is determined by 8, QF and QG and will be

denoted by n('o’QF’QG) to emphasize this dependence. In view of QF being a winning

strategy, n(so,QF,QG){N for every disturbance strategy QG. Hence a least upper
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bound n(so,Qp) exists for the set of integers {n(ao.QF,QG)‘ QG is a board
disturbance strategy j. In symbols :
n(s_,Qg) = l-géb'{ n(so.Q,.Qc)gs N

Since the set of integers n(so,QF,QG) is finite, this bound is attained by

some QG'

The greatest lower bound of n(so,QF) over all winning strategies for
s, will be denoted by n(so).

n(so) =g, ;b.{'n(so,QF)' QF is a winning strategy for soi .

Again, since the set n(so,QF) is finite, this bound is attained by
gome QF'

The following lemma will be useful.
Lemma 3.7: In a board game, let there be a winning strategy for BoE:fE!F Sf
and let n(so) = n(so,QF) = n(so’QF’QG) for some control strategy QF and

= ]
disturbance strategy QG. Let 5, QF(so)(so) and s' = Qc(sl)(sl).
Then n(s').‘,n(so) -1.

Proof: It can be scen initially that QF is a winning strategy for
s'. 1f it 1s not a winning strategy, there exists a disturbance strategy
Qé such that there are no sequence f and g of length n(s') and n(s')-1 dictated
by QF and Q& which end s' in W. If one now defines a new strategy Qa such that
Qg(sl) - QG(sl) and Qg(s) - Q&(s) for all situations s(¢ sl) for which Qé is
defined, then there will be no f, g of lengths n(so) and n(so)-l dictated by
QF and QE which end 8, in W. This contradicts the Lypothese that “(so’QF).
n(so).

Given that there is a winning strategy for s', if n(s') < n(so)-l then for

every winning control strategy Qé n(s',Q;))rﬂso). Hence there is a disturbance
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Proof: If there is a winning control strategy for s, then -c?wi. Let se W
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strategy Q('; such that n(o'.Ql',.Qa.)),‘ n(lo). A forteriori there is a disturbance
strategy Q& such that n(s'-QF.Qé)? n(n )., Define a stratagy Q" such that
Qg(sl) = Qgls, ) and Q (s) = Q&(:) Ear all a(4 8,) for which Qg 1is defined, Then
n(so.Qt.Qé)Z n(s ) +1. But n(s ) = “('o'Qr'QcN“(‘o'QrQE" leading to a con-
tradiction.

One can easily prove the following on the basis of this.
Lesma 3.8 If dn a board game n(s ) = k, then s € UH

i=1"1*
Proof: Let n(s ) = 1. Then there exists a function f€ F such that f(s)€ W,

Hence -oc Nl - él "1’

Let now the theorem be true for u(so) w k., Let n(oo) =k +1,

Then there exist a control sirategy QF' such that for every disturbance strategy

Q, n(s 'QF'QG)<k + 1, Let QF(I )(s,)) = s, and Qc(al)(o ) =8, T:en by lemms

3.7 n(s') = k §k. Hence by the induction hypothesis s'¢ U° W€ U W, Hence
K+l
U

by definition s G 1=1 1

This leads immediately to the following Corollary.

Corollary 3.9 If there is a winning control strategy for s_e¢ fgl-‘ S, then 8, € U w

n o 1"
. - U
Proof: Let n(s ) = k. Then s € 191 1€ % Wy

Analogous to the case of W-problems the idea of W-evaluations is of utility in the

description of strategies. A strategy QP will be called evaluating if -cw (k>1)
k-1
and QF(s)- f implies that for all g¢ G such that f(s)css. g(f(s))e€ kyl wi, and

s‘wl and QF(s) = f implies f(s)& V.

Theorem 3.10 An evaluating strategy is a winning strategy for every s¢ U

fer S¢
for which a winning strategy exists.

k’
Let Q. be an evaluating strategy and Q. any disturbance strategy.
F G

i

9
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If k = 1 then Qr(s)(s) & VW indicating QF is a winning strategy.
K

Let the theorem be true for s€ 19&W1. Let sGW, ;.

k
of evaluating strategies if Q'(l)(n) -5 and Qc(a?(al). s', then s'¢ U W

Then by definition
=17k’

By induction hypotheais there exists segquence (fl""fn) and (gl,gz...gn_l)

dictated Q. and Q, such that fn(sn_l(...gl(fl(s)...)ew. Hence
fn(gn_l(...gl(fl(Qc(si)(QF(s)(s))...)G‘L

Since QG is arbitrary QF is a winningz strategy for s.

One can prove also an analog of theorem 2.6 regarding evaluating strategies
to show that 1f in every situation one applies a move dictated by some evaluating
strategy, the resulting behavior of the game corresponds to that dictated by an
evaluating strategy. The theorem and its proof is omitted since these are exact
analogs of theorem 2.6 and no new difficulty is created by the relaxed structure
of board games.

The idea of evaluations and evaluating strategies are analogs of the similar
idea for W-problems. However, certain classes of sets exist for board games whose
descriptions also help in the construction of winning strategies and whoge analogs
do not exist for W~problems. These will now be discussed, for their role in strategy
construction s+ well as for bringing the theory in line with certain graph~theoretic
concepts which will be of value in later discussions.

One can define a class of subsets { Ki‘ of U as follows: se& U S

S
BGG g 8:G g
is a member of Kl if and only if for all g such that se;Sg. g(s)e wl.
ssg(éc S8 is a member of Ki (1>1) if and only if for all g such that

i-1
aess. g(s)€ RH wk and s* kL-Jl Kk.

The following are easy to see,

Lemma 3.11 s8¢ wk, if and only if there exists an f¢ F such that f(s)c K _. and

k-1
there is no f& F such that f(s)¢ KJ(J<k’ 1),

The proof will be omitted.




Theorem 3.12 Given an s¢ fl-"r §; if there axists an £¢ F such that f(s)¢€ Ky
and no £'¢ F such chat f’(u)enj(j(t), than f = Q.(s) for some evaluating
strategy Q'.
The proof of this follows from Lemma 3.11. The importance of t Ki‘
for the construction of winaning strategies lie in the fact that 1if one has
descriptions of K1 for wvery i, then one can construct svaluating strategiaa
also.
Before going on to another very important property of the class {Ki‘ln
the next section, it will he useful and worthwhile to indicate an analog of
cautious strategies in board games. For this one needs the foilowing definition.
Given a board game, one definas a relation R%S x S as follows

sRe' 1f and only if there exists an h 6 FUG such that h(s) = s'.

A board game is called Progressively Finite 1if and only if there is

no infinite chain 01.-2...!51>¢s} such thet for each 1 liﬂl1+i.

A board control strategy is called cautious if and only if for each

'3 '{Hi QF(I) w f is such that either £(a)€ W or f(s)€ g%’G sl and for all

8 € G such that £(s)¢ ss. g(f(-))“f "i' Evidently evary evaluating strategy is
a cautious strategy. Howaver, one cap say sore.

Theorem 3.13 If a board game is progressively finite then a cautious strategy

is a vinning strategy for every elamant LR 5{ Ni.

Proof: Let QF be a cautious control strategy. For any arbitrary control strategy
define a sequence 8.08,:8,00. such that for each i

el ™ QF('i)(.i) if 1 is even

i+

LI Qc(li)(li) 1f 1 1is odd

i+

© i St e e e e
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Evidently, in this sequence & 4 +1R’i for avery 1. Since the game is progressively

e e fp e ot b e e e 3y +

finite, this chain has a last eclsment By -

QG('k) would be defined and " would not be the last element of the chain.

Now lké g‘i’c S8 since otherwise

Similarly ’k‘ S

U
ECF Of

1f s, € 8';' ngﬁ then Q (s, _,)(s anu hence k=2 is cven, However

k-2) ° Bk-1

since 'o‘ 9 Wi and SF is cautious, 'j‘ lf wi for all even j. Hence sk_ze‘-f Wi.

Hence by definition of cautious strategy 'kel[' Wi which contradicts 8, being the

last element of the chain. Hence 'k-l‘g'&"c sg. Also k-1 1is then even. So

8, 1€ ywi. Then 8, & W or 8,6 s(ZJG Sg. sk‘ gl'cJG
$ince QG is arbitrary, QF is a winning strategy.

S . Hence s, ¢ VW,
g k

This theorem is an analog of Theorem 2.8 and indigates that in a finitely
progressive game one can construct a winning strategy whenever a description of

()
1 Hi is available.

It can 8180 be seen quite easily that a cautious astrategy can also be

constructed from a knowledge of l{ Ki'
Theorem 3.14 If sé¢ f‘&JF Sf and there exists an f€ F such that f(s)GLi" K

then f = QF(s) for some cautious strategy QF‘

il

Proof: Let f(s)€ Kk' Then, for every g¢ G such that f(s)& Sg,
k-1

g(f(a ))Gik_)l wi.‘.‘-f Wii Hence a strategy Q, such that Qp(s) = f is a cautious

strategy-

Some of the above theorems could have been strengthened. Also, some further

theorems can be added reparding the relationships between wi and l(1 . Also

ananlogs of theee theorems exists for {Liz s the L-evaluations. However, for the
present purposes, these are not of immediate importance. In the next section

certain well-known graph-theoretic properties of will be introduced which

U
1Ky
lead to important methods for construction of winning strategies. In these,

attention will be mostly limited to progressively finite board games.
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7. Strategies Based on Graph Decomposition -

Most of the results in this saction ars interpretations of well-knowm
testilts in GCraph Theory [23]. These intérpretations have besn aided by cerbain - } '
elementary concepts of Automata Theory {A4). It 4s strongly surmised by the |
author that the extension of the techniques discussed in this section will be
of help in developing new sethods of problem solution.

The introduction of some graph-theoretic notions are in order. A graph

is given by a plir{s.n D.vhere S is an abetract set snd RCS x S, Clearly for

D S

s board game(S,F,G,W,L ), 1f R is defined as in the previous section, then
£ S,R) defines a graph. Given & subset S'C S, R(S') is the set of all elements

related by R to elements of S', In symbols

R(s*) ={s| (28')(s'¢ ' and s'Re) .
R({ s} ) will be denoted by R(s) for simplicity.
Given a graph {S,R), a subset S' S is called a Kernel if
54 S dmplies R()NS' ¥ § oo
and :
R(S'INS' = @

Given a graph{ S,R) , an integer valued function M:5+ N mapping S into

|

|

{

i
non-negative integera 1s called a Grundy function if it has the following property; i
M(s) = n implies for all s'¢ R(s), M(s') ¢ M(s) and for each integer m<n ;
there exists an 3'¢ R(s) such that M(s') = m, l
Theorem J.1l3 (Berge) 1f the graph (S.R) corresponding to a board gm(S.F.G.H.L) |
possesses a Grundy function M, then the set

%l IM(s) = OS

is a Kernel. .




Proof: 1If M(s) = 0, then for all s' = h(s) ih( PUG} , M(s') ¥ 0, Also {if
M(s) ¥ 0, then there exists at least some hé FU G such that M(h(s)) = O,

The next theorem like the last one is an obvious specialization of a
general theorem in graph theory. One initially introduces another definition:

A progressively finite graph S,R 1s called progressively bounded 1f for

each 5€ S there is an integer N(s) such thst all chaine of R starting at @
has & length less than N.
Theorem 3.16 If a board game <S,F,G,W,L) 1s progreasively bounded and {S,R)>
is its corresponding graph, then <S.R) has an unique CGrundy-function M,
Proof: Define a subset G of 5 as follows:

co-s-flt'jl-‘sf—glzlcsg
By definition 1if sg Go and M 1is a Grundy function, M(s) = O, Also G is non-
empty by definition.

Since the graph {S,R) is progressively bounded for every s & S there 1is
an integer N such that any chain B iBysees8, of members of § such that LI
and for each { s, R 841 has length less than or equal to N. The lengths of
all chains starting at s is thus bounded above and hence there is a chain of
maximal length starting at s. Let the length of the chain of maximal length be
k(s). It will be proved by induction that for all integers n if k(s) = n then the
value of the Grundy function ¢f s is defined, finite and unique.

If k(s) = 1, then there exists a function h¢ FUG such that h(s) & s-ngsf -
gchG SB and there is no function h& FUG such that h(s)e€ hGL{'U Gsh‘ because 1if
there were, there would be a chain starting at s of length greater than 1. Hence
k(g) » 1 implies M(s) = 1,

Let the theorem be true for all s such that k(s){n. Let k(s) = n+l. Then

for any h¢ FUG such that s €S, k(h(s) ¢ n since otherwise there would be a chain
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starting at » of length greater than n+l, Since the set of values M(a') for all
8' with k(s)< u 1s defined and tinite, one has an unique integer M(s) such that
M(s) ¥ M(a') for all s' such that s' = h(s) for some he FUG and for each
k¢ M(s), there {3 an a' such that s'€ h(e) for some he FUGC and N(s') = k.
The next theorem exhibitas the relationship between the class {KA and the
graph theoretic concepts developed earlier,
Iheorem 3.17 1In a progressively bounded board game <S.F.G,H.L> let S’ be the
set of all points for which the Grundy function M has value 0. Then
s'n(sLG}ng)QliJ K, .
Moreover if WUL = § - U s U

£€F 5¢ ~gec By

G. -{g\ g€ G and "ss‘ ic finite, then

and 1f for esch s¢ S, the set

s'0 (g‘ijc sg) - Li‘ Ki
Proof: Let ue‘Kk. It will be shown by induction on k that M(s) » 0,

It is clear that if l‘"l, then M(s) >0, since there is an f¢ F such that
f(s) e W and hence M(f(s)) = 0. Now if sGKL. then R (a)ewl. Hence for sll g
such that s¢ SB’ M(g(8))>0. iience ¥M(s) = 0.

Let the theorem be true for s€ K,. 1If s € W, ,, then M(s)> O since there
is an f€ F such that ¥(s)¢ l(1 (by Lemma 3.11) and hence M{f(s)) = 0., Let
5g Kﬂ-l’ then by definition, for every g€ G such that léSg. g(a)e‘wiﬂ. whence

M(s) = O,

Hence U Kk @s'.  Also by definttion 4+ Hence the first

part of the theorem follows.

For the second part of the theorem, let s¢S'N ‘g‘E,G ss

control strategy Qr such that for all léf\eJF Sf. i1f M(s) ¥ O, QF(s)(a)c s'.

Since S' is a Kernel, such a strategy sxists. Let QG be any disturbance strategy.

). Define any

Let QG (s)(s) = 8'. Define the sequence hl'hZ"" of members of F and G as follows
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31 - QF(:'); hz - Qc(hl(l'))

and in general

e

- L]
Moy ™ Qplhgy (hyy oevehy(a'd.el)

h21 - Qc(hﬂ-l"“hl“')'“)'

Since the game is progressively finite, such a sequence must end. Let hm
be the lact elemant of the scquence. Then hm¢ G. If 4t were, then
H(h-(h._l...hl(n')...) = 0 and hnnl € F, But by the definition of h'_l and
the property of QF' H(h-_l(-..hl(l')) = 0, This leads to a contradiction.

' w A
Hence h ¢ F and hy(h _ ...(h,(8")...0¢ 5 ~ Yos

1 £GP ng)G Sg
hyChqeeo(hy(s')...)¢ L. Hence b (h _;...(h;(8')...)&VW. Since Q; 1is

= WJL and by B4

arbitrary, QG is & wvinning strategy for s'. Hence s'e'-i} ”1 by corollary
3.9. Let a'¢ wj. Since 8' = g(8) for an arbitrary g such that s€ Sg, one
obtains that if léS'I\(SL{a Sg). then for an g ¢ G such that s ‘Ss' g(8) € wj

for some j.

Given s¢ S‘ﬂ(sgc SB) define the set of integers

Ng 'iJ | (3p)(se §; and g(n)cwj) .
Since by assumption there is only a finite set of disturbances g¢ G such that
assu, N. is a finite set. Let k be the maximum of Ns' Then for all g such

: k k
J
that -‘SB' g(8)€ (o) W, Hence "igl K,. This proves
' v c U
st ( eGSg)‘ ixi

and with the reverse inequality proven in the first part of the theorem it proves

the second part of the theorem.

A board game will be called Grundy-Tractable if and only 1f it is progressively

- U - -
finite, if WUL = § tor ¢ ch-)G S8 and for any "gijc SR the set G_

ia \g ¢G and -es& is finite. The calculation of the Grundy-Fumction in a
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Grundy Tractab'e board game leads to 2 mode pf dencription for E’ Ki and
hence to the conatruction of winning strategies. However, the method for
calculating the Crundy-Function as indicated in theorem 3.16 is certainly not}a
very practicable method. Practicable methods are available for a certain class

of board games which will now be discussed,

A board game (S,F,G,W,L) wvill be called Graph~Interpretable if and only

if there exists an abstract set fL , a set H of functions mapping subsets of S)L
into S (i.e. h&€H implies h:Sh-b_s‘l.vhere ahc 5L) and a subset T of £ such
that
6rl) s =1 x fo,1}
6r2) 1) W= {(s,1)| se ri'
1) L = {(0,0 s e1}
6r3) h¢H 1f and only 1f 1) there eximts an f ¢ F such that se'sl_l if and
only 1if (=,0}€ S£ and f(s,0) = (h(s),l)
and i1) there exists a g¢ G such that s¢ Sh if and only if (s,l) ch
and g(s,1) = (h(s),0)
Gr4) 1) (-.k)csf and f ¢F implies k = O
i1) (s,k) ¢ SB and g€ G implies k = 1.
The rest of Lbhe discussion in this section will be rescricted to graph-
interpretable games--to Grundy Tr-~+ .le graph-interpretable games in particular.

Obvicusly, a graph-interpretable game is completely specified by the triple

{5, H, T) and defines a graph{02, h‘E}H h>. The Grundy-Function M of this graph

has the property that se T implies M(s) = O,
Given a finite set of Graph-Interpretable games g'li.Hi.Ti) ' 1 gtSn{ ,

a graph-interpretable gmeé, H, T> is called the sum of {<S)i. Hi' TP% if

anu only if




s1).N -nl x£), Xo o2

n
§2) he&H and h(sl,...sn) - (si,....s;‘) if and only 1f there 1s an unique !
positive integer i n and member "1‘5 Hi such that

s, * s, if J ¥ 1
ei - hi(si)
$3) T = Tlx'l'zx. ..x'I'n

Theorem 3.18 Given a finite set {(ﬂi, Hi' Ti>(of Grundy-Tractable Graph~

Interpretable Games, their sum is Grundy-Tractable.
Proof: For each i, \r.:lULi - Si - ftz‘FiSf-s Gisg, slnce tlie game@‘,u 1.1‘1)

is Grundy-Tractable. 1If now se€f), - U S, then there is no fg F, such that
i he l-l1 h i
(5.0)4 Sf and by definition no ge(’;1 such that (s,0) & Sg. Hence
- ) 29 . U
(s,0)¢ S, f\‘JFi S¢ s€c, Sg. Hence (8,0)¢e L, or seT, . llence T, _91 hellish‘

That T,& 52, - b, s, follows from (83). Hence for each 1, T, =92 U s

" héu, th 1 17 heH b

Let<SL,H,T) be the sum of S K, T, D (1= 1,2,..n ). If (8),8,,...5 ) €T,
then for each 1, 8¢ _Qi - hl&JHish' Hence there 1s no h € H such that scsh.
Hence TS SL~- hLG)li Sh. Similarly if (sl,az....sn)d.ﬂ.- thJH Sh' then for each {
5,6 -“1 - hLe, Hi Sh. Since Ti - .Qi - hyHi Sh, sie Ti' Hence

(al....sn)e 'rzxrzx...x'rn = T. Hence 52 -hLGJH shg'r. This with the previous

incqualicy shows T = §t - hlElH Sh. Hence, WYL = (SLGJ.A(S,O)!) v (sgﬁ(u,l)i) -

[

8 S

- - U
fteJst g6G g’

Let s8¢ g\(;JG Ss. Hence 8 » (g,1) for some g = (51,82....sn)eﬂnnd for some

7’ ( a1 -
1{1€19n), s‘G th:' H1 Shi. Since the gwe(ﬂi,ﬂi.'ri> 18 Grundy-Tractable, the
set ih\ heH1 and "‘J\ is finite. Hence the set of I . such that (sl.sz....sn) C—SI

1s finite. Hence the set of g€G such that (s,)) CSS i dintte.
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To show thnt<]l.H.T>' is progressively fin{te, one assumes to the contrary

that there¢ exiets an infinite sequence hl,hz... of funcrions in li such chat for

and s#5L, s € Shl. and in general h1 1( i-2(...hl(u...)e bhl.

Orie says that <.Slk, > occurs in h1 if the k th component of 111-1

-1

and the kth component of h (h (...h (8)...) axe distinct. Since one game

<f§lh Hk T :> occurs in hi for every 1 and there are onty n games. gome game

(nk.uk.rk, must occur in h for an infinite subsequence h 1 ,... of{ }
1,-1 4 =2
Then the k th component 8' of h 1 (h 1

i, 14
l\ € Hk and the k component of h i(h

1d$nc1cal to the k th component of h 2

N (s)...) belongs to Sh for some

1-1(...h (8)..,) is h (s') ind is
1 1.-2 1

(h 2" (...h'(8)...) and 10 & member of

Sh for some h1 ¢ Hk' One thus obtatns an infinite sequence hi ,hi ... of
12 2 1 "2
members of Hk such that some element s' ofii.k belongs to Sh , and for each

1
p, h (h «esh, (8').,.)ES,_ . This contradicts the sssumption that
’ 1P-1 1P-2 11 hi

<:ftk.Hk,TR>> is Grundy-Tractable snd hence progressively finite.

The importance of the sum of Graph-Interpretable games stems from the fact
that 1if the Grundy-Functions of the components are known, then the Grundy-
Function of the sum can be calculated gquite readily.

To indicate the method of this calzulation one needs to define a special

binary operation (:) between non-negative integers., Llet a and h be two such

integers. Let

A

2
ot a2+ a2+ . a2" 0ga gL

2+ coeb 2" 0gb 51

b= by +b2+b .

i.e. let a a Y
m ol

One can assume without loss of genarality that m = n and that some of the leading

0 and bnbn 1...b° be the binary represcntation a and b.

binary digits are O.

(...h8).. )




One defines

) 2 .
c=(a@b)&;°+x.12#:22 + .. e, 2

CH + b1 (mod, 2).

It can be seen easily that the @operation is a group operation on

where for each {, ¢

integers, with O as the unit element and every integer its own inverse.

The following theorem indicates the umse of the @ operator in the cal-
culation of the Grundy-Functions of sume of games.
Theorem 3.19 Let <‘"‘1 N L ,1‘!) 1 =1,2,...n be a collection of Graph-Interpretable.
Grundy-Tractable gama2s and let Hi ®e their Grundy functions. One defines
M on their sum as follows

M((8y,00080)) = M (8)) @ My(s,) @ ... DM (o).
M is a Grundy<Function on the sum.
Proof: Let H((sl.nz....nn)) = k and let H:l“'l) =n,. One has to show that for
all h€H such that (sy...s )€ Sy H(h((ll.lz....sn))) # k sud for each integer
m¢ k there exists an hg& H such that (ll,...sn)‘ Sh and M(h((sl,...sn))) - 3.
t
Let k = k +k12+ "o kt2

0

and for each i n, g, + nuz + ...ni

Let h((’1!‘2""'n)) - (ui. si....a;).

t
tZ .

Then there exists a § such that s, = li for all 1 ¥ j and 8' = B, (8,)

1 3 I
for some hje Hj' Then Hj(sj) ¢ Ny Now M((s], 8;...81)) = n1®n2@

gnjd@“j('_;) Onj@... n, and H((ll,lz.-.ln)) .-k = n1@n2@ A G -

3

ool whence

H((al.az....ln)) + M ((li,li....l;“)) - nj@ Hj(u_;).

Since Hh(lj') ¢ nj, H((ll,lz.---ln)) ¢ H(('i"é""';))’ proving that for
all h such that (nl.nz.sn)e Sh. H(h(('l"z”"'n))) ¥ M((sl.sz....nn).

Let m<{ k.

Let m = m, + m12+...+mt2t. Therc must be at least one j such that mJ ¥ k_j
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e since o ¥ k. Lat 30 be the largest such integer. Since w(k, mj = Q and
°

i k, = 1. Since k, = 1, there is an 1,, such that n, , = 1. Dafine an
% Jo Jo . olo
o integer n! = n'! 4n! . 2 4+,.,n! 2" as Yollows:
: 10 100 iol 10t
R i - if -k
L nioJ “101 nj j
. ' - + l(mod, 2) 1f K,.
o “ioj “ioj (mod, 2) mj ¥ 3
F , Since m, = InJ for j}jo and njo ¥ kso and “iojo = 1, we have
v - .
nioj nio‘1 for j)jo
L Aleo
n! <:n since n' - 0,
Ldg 1odo oo
Hence ni<( n, - Moreover, for each j (t,
0 0
7* . + + .. .2).
: kj nlj + nzj + "(10-1)1 + nioJ nuoﬂ)j nnj (mod.2)
? Consider
»n 1]
pj nlj + nzJ + 4+ n(io-l)j + nioj + |-|“_J (mod. 2)
h +k, = + n'
whence Py 3 niuj nioj
whence pJ " kJ 1f and only if nloj - nén K {.e. 1f and only 1if mj - kj. Hence

pj - “j for every j. Hence

m e n ® “2@“'®“(10—1) @nio(f) (nuoﬂ)ﬂ@nn-

Since n!] a, = M (s, ), there exists an 8! ¢$), and an heH

! _10 10 10 10 10 10 10
G such that M, (s' ) = n! and h(s, ) = »' . Hence there exists an h'€ H such
4 15 "1 i o Y

. - [}

5 that h((nl.lz....ln)) ('1"2""'10-1' .10. .10+1"'°'n) and

M((sl,lz,...si -1’ si '8y +1.-..ln)) -,
0 0

If one is given a graph-interpretable gaae(?i.u.2> vhich i{s the sum of a

finite nymber of graph-interpretable, Grundy-Tractable Games, then one can calcu~

late the Grundy-function of<ﬁ!1.H,T>’1dentify the set l{ l(i for it and construct

a winning strategy. This necessitates a knowledge of the Grundy functions of

LU SUUPRI O U
.
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each component. !owever, since the component games have much fewer states,
their Grundy-functions may be calculated by the exhaustive techalque indicated
in Theorem 3.16.

This technique of constructisn for winning strategies, of course, is limited
to graph-interpretable games which cen be decomposed into Grundy-tractahle gamea.
In what follows conditions will be set down for the graph-interpretabilicy of
board games and decomposability of graph-interpretable games.

Theorem 3.20 A board gnme(fa,?,G,H,L) is graph interpretable if and only {if

there are two subsets SO' S, of S and two one=-one maps

1

o 509 Sl

/B: F»G

such that
< . [ 4
i) L_SO, \'I_S1
[}
€S . 'R
1) g"(JG sg‘sl' EGst"SO
-1

111) o (5) =S . i «(S) =S
g ,el(g) £ ﬂ(f)

W) o () = D)) ollals) = A7) (e THs))
for each f¢ F, g¢ G and any s €S for which either side of the
equation is defined.
v) of(L) =W
vi) Sous1 -5
Proof: Let £ S,F,G,W,L> be Graph-Interpretable. There exists a set £l a set H
of partial functions mapping subsets of 5i into 51 and a subset T ofJl satisfying
Grl to Gr4., Define S0 - t(l.O)‘ s (Sliand 5, = {(s.l)l sctzg. Then (vi)
is satisfied.
Define&((s,0) = (s,1) for each element of So. This is one-one from S0 ento
Sl' Also (s,k)é S8 for g€ G implies k = 1 whence (l.k)esl. Hence Rtélc Sg& Sl'

Similarly ng Sf_C,-S satiafying (11).

0
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W o {(u,u\ ) r}“.{(.,x)\ unz -5 '
Simiiariy LG § proving {i).
1f (G.C)G.OL then s¢ T and & (8,0) = (s,1) whence & (3,0)6{(9.1)\ sc-.T}- .
Hence o (L)g W. It can be shown similarly that At (W) €L yproving (v).
For each fCF there exists an h ¢H and g ¢ ¢ such that S¢ -{(s.O)l 8 esh{
and s =f (0] 8653, £G,0) « (10,1 and g8,1) = (h(e), ). 1f one defiued
P(f) = g, the resulting F is one-one onto. Also (1i1) and (iv) will
be satisfied by thil'B .
Let now £ 5,F,6,W,L>, Sq» S;» X and ﬂ be as defined by (1) through (vi).
Then one can define £}, H and T an follows: SL €SS such that (no.sl)é.n. if and
only 1t - & (30). llence 8 €8S

and 516'5 Denote 8, by {(so,sl), 0‘ snd

4] 1’
s by {(:o,ll),li . Since of is onr-one onto, and because of (vi), if s¢ 8
then either s¢ Sl and s ~ i( a-l(.)")’ li or 8¢ S0 and azi-(a.o((n)). 0% .
ilence 5 = JLx iU.lXauiliying Grl.

86 LC S0 i{ and only if ol(s)€ N_C_Sl. Define by T the set of all pairs
(s,0f (8)) such that s€L. Then s€ T {f and only if (s,0) ¢ L and (s,1)€ V¥,
This establishes Gr2,

H Q{h ‘ h:.!'zh-i.ﬂi is constructed as follows., Let fCF and s¢ S.. Then
by (11) a#nd the construction of 51, » = f(l,d(u)).(‘li . By (111) ot (8)€ SP“).
Define h so that

N
s, = { (s, X (8)) \ .ésfk - g.(l,d(l)) \d(s) € ng.
and h{s,%(n)) = (P(f) (x (8)), £(8)); his,o¢ (8))ESL since by (iv) above
ol ( (3(()(0((:))) - f(s)., Also, f(s) = (h(s,0 (8)),1). This eatablishes first

rart of Grl) and Cr4. The second parts follow similarly.

This theorem is included to show clearly what kind of symmetry im demanded !
of a graph-representable game, The definition, based on the existence of the S2

graph, did not clarify the structure sufficiently.
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It may be worthwhile pointing out at this point that the Nim-type pames nre
graph-interpretable, This follows from the definition of graph interpretable
Rumas, the Folda 315} being played by the set of sequencas 1. The reader can
verify that conditione Ci-t4 are satisfied.

The Tic~tac-toe-like games are graph-interpretable also 1f there 1is a
premutation P on N such that A€ 1f and only if there exists a Be B such
that n¢ A 4f and only if P(p) € B. 1In this case one can set SO - l(l.p)'p - Oi
and §, = i(n,p)l p - 1} + The function ¢X may be defined as follows: ((s,0)) =
(8',1) where 8'(P(n)) = X if s(n) = ¥, 8'(P(n)) = Y if s(n) = X and s'(n) =
otherwige; is defined by (n,X) = (P(n),Y). At this point it mav not be

worthwhile proving formally that the partition SO.S and the maps and

1
gatisfy the conditions { - vi in theorem 3.20. However, the reader will do well
to convince himself, at least intuitively that thia is eo.

It can be strongly surimnised that games like chess and checkers are slso

graph-representable in thisa sensse.

Theorem 3.21 A grsph-representsble gamed7),H,TD 1is the wuw of 4 set of n

graph-representablg glmn{(ﬂi,ui,'ri_) ‘ 1 ¢ i n} if and only {f there exists a

set of n equivalence relations {Ei| lgig ni on S} and a set of disjoint subsets

¢
Jul | 1eten] of Hauch chat
1) Uui w H
1) N E1 = I, the identity relation on S

ii1) For any lllz--.ln(liﬁ ) there exista 8 ¢SLsuch that s E,s for each i.

i1
iv) o‘ T tmplies that for some E, oF 8' implies 5'4 T
i
v) lEil' implies s € Sy, 1f and only 1f o'€ S, for all he H; and
h(u)Eth(n') for all h such that s¢ $h and 5'¢ Sh.
vi) heHi implies for all s € Sh' h(l)Ejs for all 3 & o,

!
e e

xo.r.
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Proof: The sulficiency is proved by coﬂutruct1n4;311.Hi,Ti>€ as follous:

$i, i 1 eei of equivalence ciasses of E, . Since f1E, = 1. two distinct

i

elements of S3 does not lie in the same equivalence class of every Ei' Hence
H gﬁlxnzx...xnn. Let scnlxnzx...xnn. 1f s‘ﬂ. ther there i{s somc set

i equivalence classes LI YEREL (ei an equivalence class of E, for each 1)

b
such that e, N e, -.-Ne = p. Take an element n,€ @, 8,¢ €),...8 € e . But
there exists a(by(i1i1) sbove) such that s¢ e Ne, «eefte, . This contradicts
el(\ ezn...qen = #. Hence scf, proves alxgzx...xnng‘n . S1 1is thus
established.

Let 'I1 be the set of equivalence of Ei which contain some element s T.

Clearly, then TC Tlx‘l‘zx...x‘l‘n. again since nl‘:1 = I. Let s* T; for each 1 let

e be the equivalence clams of Ei continaing s, By (iv), there exists some E-l
' [] -

such that s # T for no member s' of ei. Hence e1¢ Ti' Hence szleZx...x‘rn.

tlence the complement of T is coiitained in the complement of Tlezx...xTn‘or

rlx'rzx...rng T. This establishes 53.

Define Hi as follows. For every h'¢ H!, define a member h ¢ Hi' such +hat

if se Sh" then the eguivalence class e of E1 containing s is a member of Sh

and h(ei) is the equivalence class of E’ containing h'(s), By (v), this determines

b

of EJ containing s, then by (vi) eJ is aleo the equivalence class containing

the function h ineguivocally., For all E, (idi), f eJ is the equivalence class

h'(s). Hence tf h'€ lli. then the h'(s) is in the intersection of the blocks
of EJ(jM) containing s and the hlock h(e ). This estabtlishes S2 indicating that
conditions (1)~(vi) s sufficient for (S1)-(53).

To ahow necessity 1et<Sl.H,T> be the sum of {ﬂi.Hi.‘r& (1 €14n). Defiue

) ) 1) - (]
(ll,lz,-..ln) Ei('l"z""n) if and only (f LI .. Clearly
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1

(sl,sz,...sn)(fiﬁi)(ni,s ...1;) if and only if s, = 5! for every i, This

1
2 i i
establishes (11}, '

Since T = Tlx‘rzx...x‘l‘n, by (53) ('1'52"""3)4‘ T implies 51¢‘T1 for
some {. Hence for any (si.né...aé) s, - s; implies (si, sé....sé) ¢' T.

Hence (iv) follows.
Now for every hg H there is an unique tnteger 1(1 € { tn) such that
h('l""'n> - (ui.aé....n;) implies s, ¢ S, for some h'e Hy )'i = h'(si)

and 55 = 5 for all J ¥ {. Define the class of subsets Hi as follows;
he Hi if and only if the corresponding h'e . Since there is an unique {

wvith this property for every element of H, the subsets ' are disjoint.

]
i
Since an 1 exists for every element h € !, (4) follows., Also, if

[} * 1
(sl.uz,...sn) E1 (ll.az,...on), then s, - si. Hence if (sl ,A..sn)é S

Isz
L] ] ] ) L
for h(H1 then sie Sh. for h ‘"1 hence (sl.sz....sn) € Sh also. Again

h

h((sl,nz,...-n)) - (01.92....51_1. h(si).s“l....un) and h“”i""’r'n)) "
('i"'Z""’i-l'h('i)"i+1"“B;) whence h((sl.sz,...sn))Eih(si,si,...s;).
Also, h((qi,sz....sn)) - (sl.az....h(si)...an) so that h((sl.sz,...sn))EJ
('1"2“"'n) for all § # 1. This establishes (v) and (vi).

Let there be n elements ul,az....sn in‘) . Dencte these by (811"'°81n)'
(’21""'Zn)"’('nl"'.nn) respectively, Let a' = ('11"22""°nn)' Then
'151'i for each 1. This establishes (i{t),

It must be emphasized at this point that for any application of theorems
3.20 or 3.21 to be practicable, one needs to have descriptions of the blocks

of the partitions referred to in theae theorems., This again necessitates the

use of a language in which such desctiptions can be expressed by tractably short

expressions. It will be indicated in the next section how some of the Nim-type
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games shown in Section 4 are sum-decomposable. In these cases, the descriptions

of the equivalence classes of E, are particularly simple.

i
In what follows, some of the ideas developed in this and the preceding
sections will be exemplified for Nim clags of games. Diascussions of the Tic-tac-

toe class of games will be reserved for a later cnapter.
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6. Some Exsmples of Strategy~Construction

Concen-rating attention on the Nim-like games, one can quite easily construct
a winning strategy for the first game in the examples for all states (1,0) vhere

1 40 (mod. R+1), It can be seen that l{ K1 = ((k+1l)p,1) for any integer p;> 0.

This is because for all (xl,l) € G such that x, £ k, (xl.l)((k+1)P.1) = ((k+1)p~x,,0).

1f one chooses (k+1-x1,0)e F, one ocbtains (k+1-x1.0)((k+l)p-xl.0) = ((k+1)(p-1),1).
1f p = 1, the resulting situation is & member of W so that (xl.l)((k+!) ,1) & wl

for all (xl.l) satisfying condition X . The result follows by induction om p.
Hence in any situation (1,0) 1f 4 # 0 (mod. k+l), one can choose an integer x = 1

(mod. k+l1) such that 0 {x <k and such that (3:,0)(1..0)¢(-1J K Since the game

T
is obviously Progressively Bounded, this yields a winning control strategy for
the set of situations mentioned.

For future dlscussions, it may be worthwhile pointing out that the Grundy-
function M of the graph of this game 1s definable as the smallgst integer M({1)
such that M(1) = 1 (mod. k+1). Figure 3.5 indicates this fact for a game with
1 €7 for all nodes and k = 2. The numeral at each node indicates the value of

i and the numeral in parenthesis indicates the value of the Grundy-Function

6(2) 2(2)

(o)
Fig. 3.5

" ]
52 J(o) ')
The game with n = 2 cited {n Section 4, is also analyzable in terms of the

Grundy function. However, this does not shed any further light on the cuntents

. of this book, It will be analyzed in an entircly ad hoc manner.
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1t can be seen in this case that the situations ((2p,2q),1) belong to ‘i’inw
for all p,3. For g = p = 0, the sltuation belongs to W. Also, for all p and g
the only situation to which the disturbance can move are ({(2p-1,2q),0),
({2p,29~1),0) and ({2p~1,2q-1),0) from which the control can wmove to
(Z{p-152(q-1),0}), For - = qw O, and pw 0, q = 1 and p » i, q = O, then
({2p,2q),1) 1is a member of K,. The result follows by induction.

One can express the above results by saying that £f the control can reduce
the situation to the case where both heans are even, thea the disturbance has
to reduce at least one heap to an odd number from which the control can move
alwvays to a "both even” aituation.

In both of the above cases the descriptions of L{ Ki was expressible in a
language containing predicates involving {deals of integers modulo fixed integers.
liowever, there was very little indication of an uniform procedure for generating
the description. One may say that if one has an efficient "pattern recognition"
procedure and a pre-defined knowledge of patterns such as equivalences mod. k,
one can recognize these patterms through case studies, generating a theorenm
(like ((2p,2q),01)€ l{ Ki) from the recognized patterns and proving them,

In some fortunate cases, the structures of sets like Ki and wi become
quite transparent; {n others, techniques indicated by Theorem 3.20 and 3.21
become effective. This latter can be exemplified by the two last classes of
games mentioned in Sec. 3.

One can see that both of these games (n is any finite number, and d-‘-‘P"-’-

(3 x,) (3¥1-> x, = 0 snd x> 0) in the first case and dl/ﬂ;(y x) (351 xg= 0 .
and kgsxi) 0) for some specified k in the second case) can be described as sum-
compositions of n games. In the first case (xij> 0) the value Grundy-function

of each component graph at each node equals the number of sticks in the heap

(this fact can be gleaned from a very simple "pattern recognition”, at present

e i

g . e
ol
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non~nechanizable)., In the second case, the value of the Grundy-Function at
each node can be calculated by the seme method as indicated for the case n = 1.
Once these Grundy Functions are known, the Grundy functionsa of the sum pame is
calculated by the method indicated in r:~-~rem 3.19,

A specific example will make the procedure clear. Let us take the case
where there are 4 heaps of sticks and each move consists of removing not more
than 3 s:icks from one of the heaps. Then the value of the CGrundy function for
the situation ((1,,1,,15,4,),p) is M(1,) @ M(4,) @:—1(13) @nu“) vhere M(1 ) is
the remainder obtained by dividing 1k by 4, A winning strategy exists for all
situations where a control is applicable and the value of the Grundy Function is
not zero. For example, for the situation ((7,7,6,5),0) the value of the Grundy-
funttion 18 3 3@ 2@ 1 = 3. The value can be reduced to zero, Ly removing
3 sticks from either the fitrst or the second pile, reducing the situatfon in the
first case to ((4,7,6,5),1). Any disturbance renders the value of the Crundy-
function to non-zero. As an example, the disturbance ((0,0,0,2),1) reduces the
situaction to ((4,7,6,3),0) whose Gruddy function is 0@ 3@ 2 3 = 2. The
move ((0,0,0,2),0) reduces the gituation to ((4,7,6,1),1) whose Grundy function
18 0 @ 3@ 21 = 0. A typical continuation to the end is shown in Fig. 3.6,

The result of Theorem 3.19 is the strongest one known to the author regarding
the calculation of Kernels of game graphs. Other results pertinent to calculation
of Grundy-functions of graphs are known; however the calculations are still pro-
hibitively lengthy except in epecial cases. Results for parallel decomposition
of graphs are available only for cases where the structures of the component graphs
obey severe restrictions.

Many games do not have evident decompositions of the type exemplified ahove.
llovever, it is believed that theorem 3.21 and various weaker forms may enable

the recognition of decomposability in games which are not evidently decomposable.
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(¢7,7,6,5),0)
((3,0,0,0,0)
(¢,7,6,5),1) —$€0:0:0:2),1)5 (¢4 7.6,3),0)

((0,0,0,2),0)
((1,7,6,0,00 L3001 (4,7,6,1),1)

((1,0,0,0),1)
((0,7,6,1),1) (‘°'°'2'°)'1)% ((0,7,4,1),0)
(¢0,2,4,1),0)

((0,2,4,1),0) ¢ £4923:00:00: ) (o 5.4,1),1)

((0,1,0,0,0)
0,0,2,0),1)_
«o,1,6,1, X S ((0,1,2,1),0)
l, ((0,0,2,0),0)
(0,1,0,00,0) out020:0:101) (03 0,1),1)

]/ ((0,1,6,0),0)
(¢0,0,0,0),1)

Fig. 3.6
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One may look for relaxation of these conditions by realizing that the
relation R corresponding to the game may be partitionad into various classes
of functions and one need not restrict oneself to an unique set H of functions.
One can try various partitions of R (ss long as the elements of these partitions
are sasily describable) so that the conditions of Theorem 3.21 are satisfied
by one of them,

Another way of relaxing the stringent conditions is to look for an anslogous
theorem involving covers rather thsn partitions in some manner analogous to
the way Hartmanis and Stearn develop their concept of Sst Systems. Very little
work hss been done in these directions so far as ie known to the author. A
large amount of work may have gone into the calculation of Kernels of graphs
composed by means other than summing: 1f that is so, then the paucity of the
results indicate that methods for these may be difficult to come by.

In the rest of the present chapter another method for recognizing %’w will

i
be digcussed that has been used successfully in literature.
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9. Racognizing Forcing States Through Linesr Evaluation

One often tries to vecognize membsrs of Li' "1 by devising languages suitable
to their description. This language may be counstructed by a cavef@ avaluatien
of its predicates with respect to the rules of the game (a3 mertioned earlier,
one technique for doing this with respect to the tic-tac-iove like games will be
described in detail later). Another way of constructing the language might be
to use predicates which have been found useful in the game (useful in some sense)
and try to construct combinations of them whose denotations hopefully coincides
wien o,

One mode of combinstion of predicates that has received a lot of attention
in literature can be given the general name 'Jinear combination’. In its most
elementary fora this coincides with the mode of combination called "combination
by linear threshold gates". The predicates, in these caes, denote the equiva-
lence classes of the Kernels of functions mapping the universe of discourse into
real numbers.

Let S be a set and f: S—p Rbe a function mapping S into real numbers. The
Kernel of this map is the equivalence relation E -?0? -1 defined as follows:

s, Es, if and only if Q(nl) -dq (s,)
This equivalence relation partitions S into disjoint sets, yielding one set for
esach real number in the range of? « Each equivalence class is the denotation
of a predicare of the fom‘f (s) = r. Let these predicates be repregented by Pr'

Let @ - {*1"2"":\‘ be a finite set of functions defined on S and let
iP r lq 16 @. r € range of ?1‘ be the set of predicates associated with chem.

Let "'1""2"“":; be a set of reals. One can define a new function on s as a

linear combination of the f T
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It the range of each function qpi € Qp is finire, the Kernel of 7Vdef1n|s
& partition of § which is of finite index and whose equivalance classes are
obtained from the equivealence classes of the Kerpels of 4; by means of set
operations.

Let each of the q”

i
Also, let us define a subset T of S as follows:

be a characteristic function of some subset of §.

set if Y20
vhere 1s a specific real number. Clearly T i{s the union of a set of equiva-
lence classes in the Kernel of 9“. The characteristic function of T is often
called a "linearly separable function" of the subsets defined by the ¥ L
their complements.

In what follows, attention will be restricted to linear combinations of
predicates in general; the discussion above is included to indicate the our
understanding of linear combination of predicates extends no further than what
is understood sbout linearly separable functions.

In what follows it will be shown how a certain function y}can be defined
from the set of situations to reals in such a way that ‘Y (s) exceeds a constant
value for all members of %’Hi. Remarks will then be made regariing the feasi-
bility of constructing Yy(n) a8 8 linear combination of the other functions.

Let (S F,G,W L> be a board game. Defirz a function:

Vs - ¢ s gLest nad
having the following property
L1) ac¢V¥ and 7'(-')2 ‘f’ (#) implies s'cC W
L2) ec¢L and ‘f)(o')i 7’(-) implies o' ¢ L.
It is clear that

Lemma 3,22 s W (s) . L (s).
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Progf: Otherwize thers exist real nushsrs v and y' such that

7%
J W ¢ ()« !’<Y'( sel ? (8).
Than there exist sg ¥ and a'¢ L such that y = ?(-} and y' = ?(n'). But
then by L1 and L2, both @ and 8' ara membars of L and W. Since L and W are
disjoint, this is impoasible.

It can slso be seen easily that if S - f‘i)l-' Sf - S8 ¢ WUL, then for

3l3, G

any situation a& S - t‘(é)i‘ Sf - 893 Sg -W-1,

.’rw‘p(l)>? (9> W& ¢
whence in this case 9" Q(-)) .I.\J- d (s). However, 1t is always true that for

ftl-" S¢ = 3eG 8 ‘f(m) r"w o (s) 1implies s¢ W. If

F and G are finite, one can extend ¢ into ?’ , defined over some elements of
U UV_.5) as follows

(f‘ F Sf)U(SGG g

Y@ =) 1fees- Yos - Uos
Y (s) = uini‘l’(s(n))‘ s e Sgi if s ¢ U 5!
Y'(s) = uxi‘t’(f(-)) \ oesfi 1f 8 ¢ fgly ¢

1n the second and third equatdons above, if the right hand side 1z not deiined,

any element e -

then the left hand side is not defined either. Hence ‘f/(a) may not have S as
its domain., The following however, is true.
Theorem 2.23 In a progressively bounded board game where q(aﬁ - .th‘w ¢ (s)
for some s'¢ W, lé-fyr S¢ and V(c),) #LH Y (s) 1f and only if “‘il L
Proof: Define a control strategy QF as follows:
1f V(o) is not defined then QF(a) = f where f is the first

element of F (in some giver ordering) such that s €& Sf.

11) If \F(l) is defined, then QF(') is the first elemant of F (in the given .
ordering) such that "P(QF(-)(I)) - Y"(.). By definition of ‘f/ » such an element

must exist.

ey
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QF 1# a winning strategy for all eleaments -Cf';"!_. Sf such chat
9’&:}3 S’ﬂi.i 1’(3). To dee this, let QG be an arbitrary disturbance strategy.
Let 'f’(-o).} ,‘“H ?(l): Define a wequence of situations 8518, 88 follows:

B4y " QF('i)('t) 1f 1 1is even

8541 ° QG(.i)('i) if { is odd.

One can see immediately that for all {, ‘f’(ni) 3?(;0). This is true for

o= 0. Let it be true for L £ k, If k is odd, then s - g(lk) for some g¢ G.

k+l
By definicion ..‘"", ‘,"(g(sk))} ‘f’(uk). 1f k i@ even, then by definition of

Since the game is progressively bounded there 1is a last element 80 of the

eS¢ - s(t)c Sgr Also Wis) = Fi,) 2 Hag)

ﬁ“u ‘f(-). Hence lmG W. Since QG is arbitrary, Ql-‘ is a vinning strategy for

sequence '0"1"""::‘ s - )

LI Since a winning strategy exists for 'O"O‘ ({ ui.
Cunversely, let l06 wkcq wi. If k » 1, then there exists an f C F such

that f(nu) ¢ W and hence ‘f(f(oo))a ‘S:“'J tf(s). By definition of '1".

Y (s > Cf (EsN> F4 ff’(:). Hence 1f w6 Wy, P(a)> 24 & (s).
Let it be true that if s¢ b, W, then Y(n)> ﬁ‘w f(s).

Let IOE "k+1' Then there exists an f€ F guch that for all g€ G such that

£(s,)6 Sg? g(f(sy))€ kl:'l W ‘)"(g(t‘(no)))a .ﬁ ¢ (s). Hence ‘f(t(so)) .
m{ Y (a(t(a))) | <t(-0)¢egf2 F4 P@. Bue Y2 ‘P(f(-o)) by defi-
nition. Heace ' (s))> ,:‘H F ().

The above theorem shows that if \)U(.) could be calculated for all s for which
\}/u defined, then a csutious stratagy could be applied for the choice of
controls, However, P(l) cannot be calculated from definition with any practi-
cable degree of efficiency.

In case one can easily calculate a set of functions tfl. ?2 fn mapping

S into resls such that




e B ey WTRTT A a4 e S Syt p ey N

-144~

T RCR SRR PRENITN X
then tha predicata
Y28
is a ltnear combination of the predicates corresponding to the equivalence
classes of the Kernels of the func:tono{qu.

Given a set of functions ¢1, ?2""?:1’ a calculation of ¥ would fnvolve

the search for a set of real numbers Wyi%5,.. @, with the two following

rroperties. For all nds-fyp Sf - 390 S8
Zl«il‘P 1(!)?9“ and only if s€ W and for all s¢ fgl-‘ Sf
Zwiqai (s) » max wmin izwiqi (g(f(s)) \ 86S, and f(s) ¢ Seg. In the case
f6F g6 G

where the?"1 are characteristic functions, methods are known for obtaining the
fa by an adaptive procedure when thay exist [2§] so that they satisfy the first
of the atove two conditions. Some of the algorithms also indicate impossibility
of fulfilling the conditions when no let$J1.t§2... exists which can fulfil fc.
Very little theoretical study has gone into methods
when no -et‘41.02 vee exigts which can fulfil 1t, Very little theoretical
study has gone intc methods for fulfi{lling the second condition even when it
can be fulfilled.

liowaver, some excellent case studies have been done by Samuel [i’] on the
game of checkers where certain adsptive techniques have been explored for the
calculation of the Cdi. Theﬁpt'l were calculated by giving suitable mathematical
interpretations to certain well-known {mportant evaluations of checker-board

positions. 'rhelJ1 's wvere calculated over a course of manv games by adjusting

them to fulfill the second condition above, The strategics resulting from the

J e e s T e e e i b W
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approximate descriptions of Eg wi so obtainad have vielded an extremely powerful
checker~playing program, There are indications that by the use of more than one
"iayer" of threshold logic, a stronger program can be obtained. However, the
only method aveilable for testing thesa strategies seems to be operational, to

wit, accumulating statistice regarding the performance of the program against

gtrong players,

a
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